精英家教網 > 高中數學 > 題目詳情
設函數y=g(x)為奇函數,f(x)=2+g(x)的最大值為M,最小值為m,則M+m=( 。
分析:由題意可得g(x)的最大最小值分別為M-2,m-2,由奇函數的性質可得(M-2)+(m-2)=0,變形可得答案.
解答:解:∵函數y=g(x)為奇函數,∴g(-x)=-g(x),
又f(x)=2+g(x)的最大值為M,最小值為m,
所以g(x)的最大最小值分別為M-2,m-2,
由奇數的性質可得(M-2)+(m-2)=0,
解得M+m=4
故選D
點評:本題考查函數的奇偶性,涉及函數的最值問題,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
(1)求函數f(x)的解析式;
(2)令函數g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實數k的取值范圍;
②設函數y=g(x)的圖象與直線x=2交于點P,試問:過點P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•合肥模擬)已知函數f(x)=ex-a(x-1),x∈R.
(1)若實數a>0,求函數f(x)在(0,+∞)上的極值;
(2)記函數g(x)=f(2x),設函數y=g(x)的圖象C與y軸交于P點,曲線C在P點處的切線與兩坐標軸所圍成的圖形的面積為S(a),求當a>1時S(a)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ex-a(x-1),x∈R,其中a為實數.
(1)若實數a>0,求函數f(x)在(0,+∞)上的極值.
(2)記函數g(x)f(2x),設函數y=g(x)的圖象C與y軸交于P點,曲線C在P點處的切線與兩坐標軸所圍成的圖形的面積為S(a),當a>1時,求S(a)的最小值;
(3)當x∈(0,+∞)時,不等式f(x)+f′(x)+x3-2x2≥0恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•虹口區一模)如果函數y=f(x)的定義域為R,對于定義域內的任意x,存在實數a使得f(x+a)=f(-x)成立,則稱此函數具有“P(a)性質”.
(1)判斷函數y=sinx是否具有“P(a)性質”,若具有“P(a)性質”求出所有a的值;若不具有“P(a)性質”,請說明理由.
(2)已知y=f(x)具有“P(0)性質”,且當x≤0時f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)設函數y=g(x)具有“P(±1)性質”,且當-
1
2
≤x≤
1
2
時,g(x)=|x|.若y=g(x)與y=mx交點個數為2013個,求m的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视