已知⊙C:x2=(y-1)2=5,直線l:mx-y=1-m=0
(1)求證:對m∈R,直線l與圓C總有兩個不同交點A、B;
(2)求弦AB中點M軌跡方程,并說明其軌跡是什么曲線?
(3)若定點P(1,1)分弦AB為,求l方程.
(1)圓心C(0,1),半徑r= ∴d<r,∴對m (2)設中點M(x,y),因為L:m(x-1)-(y-1)=0恒過定點P(1,1) ∴ ∴ 即: (3)設A(x1,y1),B(x2,y2)解方程組 得(1=m2)x2-2m2x=m2-5=0,∴ ∴(x2-1,y2-1)=2(1-x1,1-y1),即:2x1=x2=3② 聯立①②解得 |
科目:高中數學 來源: 題型:
已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.
(2)從圓外一點P(x0,y0)向圓引切線PM,M為切點,O為原點,若|PM|=|PO|,求使|PM|最小的P點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.
(2)從圓外一點P(x0,y0)向圓引切線PM,M為切點,O為原點,若|PM|=|PO|,求使|PM|最小的P點坐標.
查看答案和解析>>
科目:高中數學 來源:2015屆廣東省高一下學期第一次段考文科數學試卷(解析版) 題型:解答題
已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.
(2)從圓外一點P(x0,y0)向圓引切線PM,M為切點,O為原點,若|PM|=|PO|,求使|PM|最小的P點坐標.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年大綱版高三上學期單元測試(7)數學試卷解析版 題型:解答題
(本小題滿分12分)已知⊙C:x2+y2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點,O為坐標原點,且=a,
=b(a>2,b>2).
(Ⅰ)求線段AB中點的軌跡方程.
(Ⅱ)求△ABC面積的極小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com