精英家教網 > 高中數學 > 題目詳情
已知函數y=f(x)的圖象過點(-2,-3),且滿足f(x-2)=ax2-(a-3)x+(a-2),設g(x)=f[f(x)],F(x)=pg(x)-4f(x)
(I)求f(x)的表達式;
(Ⅱ)是否存在正實數p,使F(x)在(-∞,f(2))上是增函數,在(f(2),0)上是減函數?若存在,求出p;若不存在,請說明理由.
分析:(I)欲求f(x)的表達式,只要先求出a值即可,利用函數y=f(x)的圖象過點(-2,-3),可求出a值,從而問題獲解;
(II)對于存在性問題,先假設存在,正實數p,使F(x)在(-∞,-3)上是增函數,在(-3,0)上是減函數.再結合題目中條件求出p值,最后看對于求出的p值,函數F(x)是否符合要求,若符合,則存在,若不符合,則不存在.
解答:解:(I)令x-2=t,則x=2+t∴f(t)=a(2+t)2-(a-3)(2+t)+(a-2)∵f(-2)=-3∴a-2=-3,∴a=-1(13分)
∴f(t)=-(2+t)2+4(2+t)-3=-t2+1,即f(x)=-x2+1(15分)
(II)g(x)=f[f(x)]=f(-x2+1)=-(-x2+1)2+1=-x4+2x2F(x)=pg(x)-4f(x)=p(-x4+2x2)-4(-x2+1)=-px4+(2p+4)x2-4Fn(x)=-4px3+4(p+2)x=-4x(px2-p-2)
∵f(2)=-3,假設存在正實數p,使F(x)在(-∞,-3)上是增函數,在(-3,0)上是減函數∴Fn(-3)=0,解得p=
1
4
(10分)
p=
1
4
時,Fn(x)=-x3+9x=x(3-x)(3+x)
當x<-3時,Fn(x)>0∴F(x)在(-∞,-3)上是增函數
當-3<x<0時,Fn(x)<0∴F(x)在(-3,0)上是減函數
∴存在正實數p=
1
4
,使得F(x)在(-∞,-3)上是增函數,在(-3,0)上是減函數(14分)
點評:本題主要考查了抽象函數及其應用,考查分析問題和解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

16、已知函數y=f(x)是R上的奇函數且在[0,+∞)上是增函數,若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

2、已知函數y=f(x+1)的圖象過點(3,2),則函數f(x)的圖象關于x軸的對稱圖形一定過點(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是偶函數,當x<0時,f(x)=x(1-x),那么當x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是定義在R上的奇函數,當x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视