【題目】已知正項等比數列{an}滿足:a7=a6+2a5 , 若存在兩項am , an , 使得aman=16a12 , 則 +
的最小值為( )
A.
B.
C.
D.不存在
科目:高中數學 來源: 題型:
【題目】集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B≠,則實數a的取值范圍是( )
A.(﹣∞,1)
B.(﹣∞,1]
C.[1,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)= ,當點M(x,y)在y=f(x)的圖象上運動時,點N(x﹣2,ny)在函數y=gn(x)的圖象上運動(n∈N*).
(1)求y=gn(x)的表達式;
(2)若方程g1(x)=g2(x﹣2+a)有實根,求實數a的取值范圍;
(3)設 ,函數F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域為
,求實數a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱柱中,
平面
,
,
,
,點
在棱
上,且
.建立如圖所示的空間直角坐標系.
(1)當時,求異面直線
與
的夾角的余弦值;
(2)若二面角的平面角為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列中,
,
,
.數列
的前n項和為
,滿足
,
.
(1)求數列的通項公式;
(2)數列能否為等差數列?若能,求其通項公式;若不能,試說明理由;
(3)若數列是各項均為正整數的遞增數列,設
,則當
,
,
和
,
,
均成等差數列時,求正整數
,
,
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(Ⅰ)求證:SB=SD;
(Ⅱ)若∠BCD=120°,M為棱SA的中點,求證:DM∥平面SBC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設奇函數f(x)在(0,+∞)上為增函數,且f(1)=0,則不等式 <0的解集為( )
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx(a,b為常數,且a≠0),f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式
(2)是否存在常數m,n(m<n),使f(x)的定義域和值域分別是[m,n]和[2m,2n]?如存在,求出m,n的值;如不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com