精英家教網 > 高中數學 > 題目詳情

已知橢圓E1(ab0)的右焦點為F(3,0),過點F的直線交EA,B兩點.若AB的中點坐標為(1,-1),則E的方程為(  )

A. 1 B.1 C.1 D.1

 

D

【解析】A(x1y1),B(x2,y2),則

,.

x1x22,y1y2=-2,kAB.

kAB,,a22b2,

c2a2b2b29,bc3a3

E的方程為1.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷2練習卷(解析版) 題型:解答題

設函數f(x)sinsincos ωx(其中ω0),且函數f(x)的圖象的兩條相鄰的對稱軸間的距離為.

(1)ω的值;

(2)將函數yf(x)的圖象上各點的橫坐標伸長到原來的2倍,縱坐標不變,得到函數yg(x)的圖象,求函數g(x)在區間上的最大值和最小值.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷6練習卷(解析版) 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數的莖葉圖如圖所示,其中莖為十位數,葉為個位數.

(1)根據莖葉圖計算樣本均值.

(2)日加工零件個數大于樣本均值的工人為優秀工人.根據莖葉圖推斷該車間12名工人中有幾名優秀工人?

(3)從該車間12名工人中,任取2人,求恰有1名優秀工人的概率.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷5練習卷(解析版) 題型:解答題

已知橢圓C1(ab0)的離心率為,其左、右焦點分別是F1、F2,過點F1的直線l交橢圓CE、G兩點,且EGF2的周長為4.

(1)求橢圓C的方程;

(2)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設P為橢圓上一點,且滿足t (O為坐標原點),當||時,求實數t的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷5練習卷(解析版) 題型:填空題

x2y22x4y150上到直線x2y0的距離為的點的個數是________

 

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷5練習卷(解析版) 題型:選擇題

已知雙曲線1和橢圓1(a0,mb0)的離心率互為倒數,那么以a,bm為邊長的三角形是(  )

A.銳角三角形 B.直角三角形

C.鈍角三角形 D.銳角或鈍角三角形

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷4練習卷(解析版) 題型:解答題

如圖,已知四棱錐PABCD的底面為直角梯形,ABCD,DAB90°,PA底面ABCD,且PAADDCAB1,MPB的中點.

(1)求證:AMCM;

(2)NPC的中點,求證:DN平面AMC.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷3練習卷(解析版) 題型:解答題

已知數列{2n1·an}的前n項和Sn1.

(1)求數列{an}的通項公式;

(2)bn,求數列的前n項和.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷1練習卷(解析版) 題型:解答題

已知函數f(x)ax2ln xx(0,e],其中e是自然對數的底數,aR.

(1)a1時,求函數f(x)的單調區間與極值;

(2)是否存在實數a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视