精英家教網 > 高中數學 > 題目詳情

【題目】甲乙兩個班級均為40人,進行一門考試后,按學生考試成績及 格與不及格進行統計,甲班及格人數為36人,乙班及格人數為24人.

(1) 根據以上數據建立一個的列聯表;

(2) 試判斷成績與班級是否有關?

參考公式:,其中

【答案】(1)列聯表見解;(2)有99.5%的把握認為“成績與班級有關系”.

【解析】試題分析:(1)由題意知按學生考試成績及格與不及格進行統計,甲班及格人數為乙班及格人數為,從而做出甲班不及格的人數是和乙班不及格的人數是列出表格,填入數據即可;(2)根據所給的數據,代入求觀測值的公式,求出觀測值,把觀測值與臨界值比較,得到有的把握認為成績與班級有關”.

試題解析:(1)2×2列聯表如下:

不及格

及格

總計

甲班

4

36

40

乙班

16

24

40

總計

20

60

80

(2)

,所以有99.5%的把握認為“成績與班級有關系”.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知f(x)= ,則下列結論正確的是(
A.f(x)為偶函數
B.f(x)為增函數
C.f(x)為周期函數
D.f(x)值域為(﹣1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設fn(x)=(3n﹣1)x2﹣x(n∈N*),An={x|fn(x)<0}
(1)定義An={x|x1<x<x2}的長度為x2﹣x1 , 求An的長度;
(2)把An的長度記作數列{an},令bn=anan+1;
1°求數列{bn}的前n項和Sn;
2°是否存在正整數m,n(1<m<n),使得S1 , Sm , Sn成等比數列?若存在,求出所有的m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,.

(1)令,求的單調區間;

(2)已知處取得極大值.求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,圓軸的正半軸交于點,以為圓心的圓

與圓交于兩點.

(1)若直線與圓切于第一象限,且與坐標軸交于,當線段長最小時,求直線的方程;

(2)設是圓上異于的任意一點,直線分別與軸交于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若數列{an}是等差數列,首項a1>0,a2003+a2004>0,a2003 . a2004<0,則使前n項和Sn>0成立的最大自然數n是(
A.4005
B.4006
C.4007
D.4008

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 用總長14.8米的鋼條制作一個長方體容器的框架,如果所制容器底面一邊的長比另一邊的長多0.5米,那么高為多少時容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交通指數是交通擁堵指數的簡稱,是綜合反映道路網暢通或擁堵的概念.記交通指數為,其范圍為,分別有5個級別:暢通;基本暢通;輕度擁堵中度擁堵;嚴重擁堵早高峰時段),從貴陽市交通指揮中心隨機選取了二環以內50個交通路段,依據交通指數數據繪制的直方圖如圖所示:

(1)據此直方圖估算交通指數時的中位數和平均數;

(2)據此直方圖求出早高峰二環以內的3個路段至少有兩個嚴重擁堵的概率是多少?

(3)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴重擁堵為60分鐘,求此人所用時間的數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视