精英家教網 > 高中數學 > 題目詳情
△ABC一邊的兩個頂點為B(3,0),C(3,0)另兩邊所在直線的斜率之積為 為常數),則頂點A的軌跡不可能落在下列哪一種曲線上(   )
A.圓B.橢圓C.雙曲線D.拋物線
D
解:設A(x,y)依題意可知,
整理得y2-λx2=-9λ,
當λ>0時,方程的軌跡為雙曲線.
當λ<0時,且λ≠-1方程的軌跡為橢圓.
當λ=-1時,軌跡為圓
∴拋物線的標準方程中,x或y的指數必有一個是1,故A點的軌跡一定不可能是拋物線.故選D
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的離心率是,其焦點為,P是雙曲線上一點,
,若的面積等于9,則(  )
A.5B.6C.7 D.8

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

拋物線的焦點為,過點的直線交拋物線于兩點.
①若,求直線的斜率;
②設點在線段上運動,原點關于點的對稱點為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓上的任意一點到它兩個焦點的距離之和為,且它的焦距為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同兩點,且線段的中點不在圓內,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在以點為圓心,為直徑的半圓中,,是半圓弧上一點,,曲線是滿足為定值的動點的軌跡,且曲線過點.

(Ⅰ)建立適當的平面直角坐標系,求曲線的方程;
(Ⅱ)設過點的直線l與曲線相交于不同的兩點、
若△的面積不小于,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

為了加快經濟的發展,某省選擇兩城市作為龍頭帶動周邊城市的發展,決定在兩城市的周邊修建城際輕軌,假設為一個單位距離,兩城市相距個單位距離,設城際輕軌所在的曲線為,使輕軌上的點到兩城市的距離之和為個單位距離,

(1)建立如圖的直角坐標系,求城際輕軌所在曲線的方程;
(2)若要在曲線上建一個加油站與一個收費站,使三點在一條直線上,并且個單位距離,求之間的距離有多少個單位距離?
(3)在兩城市之間有一條與所在直線成的筆直公路,直線與曲線交于兩點,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

是以為焦點的拋物線,是以直線為漸近線,以為一個焦點的雙曲線.
(1)求雙曲線的標準方程;
(2)若在第一象限內有兩個公共點,求的取值范圍,并求的最大值;
(3)若的面積滿足,求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓與直線交于兩點,過原點與線段中點的直線的斜率為,則的值為                  (    )
A.B.  C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓與雙曲線有相同的焦點是兩曲線的一個交點,則 等于    (    )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视