【題目】若關于的不等式
在區間
上有解,則實數
的取值范圍為_________
科目:高中數學 來源: 題型:
【題目】如圖,已知圓內接四邊形ABCD中,AB=3,AD=2,∠BCD=1200.
(1)求線段BD的長與圓的面積.
(2)求四邊形ABCD的周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是雙曲線E:
的左、右焦點,P是雙曲線上一點,
到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當
時,
的面積為
,求此雙曲線的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數f(x)=|x+a|﹣2a,其中a∈R.
(1)當a=﹣2時,求不等式f(x)≤2x+1的解集;
(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國南北朝時代的數學家祖暅提出體積的計算原理(祖暅原理):“冪勢既同,則積不容 異”.“勢’’即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處截得兩幾何體的截面積恒等,那么這兩個幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標系中,圖1是一個形狀不規則的封閉圖形,圖2是一個上底為l的梯形,且當實數t取[0,3]上的任意值時,直線y=t被圖l和圖2所截得的兩線段長始終相等,則圖l的面積為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數f(x)=x+1+|3﹣x|,x≥﹣1.
(I)求不等式f(x)≤6的解集;
(Ⅱ)若f(x)的最小值為n,正數a,b滿足2nab=a+2b,求2a+b的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(k
R),且滿足f(﹣1)=f(1).
(1)求k的值;
(2)若函數y=f(x)的圖象與直線沒有交點,求a的取值范圍;
(3)若函數,x
[0,log23],是否存在實數m使得h(x)最小值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】李冶(1192﹣1279),真定欒城(今屬河北石家莊市)人,金元時期的數學家、詩人、晚年在封龍山隱居講學,數學著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑,正方形的邊長等,其中一問:現有正方形方田一塊,內部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( )
A.10步、50步
B.20步、60步
C.30步、70步
D.40步、80步
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com