精英家教網 > 高中數學 > 題目詳情
定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”(n∈N*).
(Ⅰ)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列{cn}的首項為2013,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8052,證明{cn}是“三角形”數列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項?
(解題中可用以下數據:lg2≈0.301,lg3≈0.477,lg2013≈3.304)
【答案】分析:(Ⅰ)確定{an}是三角形數列,再利用函數的單調性,可得不等式,即可求k的取值范圍;
(Ⅱ)求得數列{cn}的通項,再利用定義進行證明即可;
(Ⅲ)確定{g(cn)}單調遞減,利用定義可得不等式且lgcn-1+lgcn>lgcn-2,由此可得n的范圍,從而可得結論.
解答:(Ⅰ)解:顯然an=n+1,an+an+1>an+2對任意正整數都成立,即{an}是三角形數列.
因為k>1,顯然有f(an)<f(an+1)<f(an+2)<…,
由f(an)+f(an+1)>f(an+2)得kn+kn+1>kn+2
解得
所以當時,f(x)=kx是數列{an}的保三角形函數.…(3分)
(Ⅱ)證明:由4sn+1-3sn=8052,得4sn-3sn-1=8052,
兩式相減得4cn+1-3cn=0,所以…(5分)
經檢驗,此通項公式滿足4sn+1-3sn=8052.
顯然cn>cn+1>cn+2,
因為,
所以{cn}是三角形數列.…(8分)
(Ⅲ)解:,
所以{g(cn)}單調遞減.
由題意知,①且lgcn-1+lgcn>lgcn-2②,
由①得,解得n<27.4,
由②得,解得n<26.4.
即數列{bn}最多有26項.…(13分)
點評:本題考查新定義,考查函數的單調性,考查解不等式,考查學生分析解決問題的能力,正確理解新定義是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”(n∈N*).
(Ⅰ)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列{cn}的首項為2013,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8052,證明{cn}是“三角形”數列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項?
(解題中可用以下數據:lg2≈0.301,lg3≈0.477,lg2013≈3.304)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•青浦區二模)[理科]定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N*).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省高考數學模擬專題訓練:解答題(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视