【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標是整數,且與直線
相切.
(1)求圓的方程;
(2)設直線與圓相交于
、
兩點,求實數
的取值范圍;
(3)在(2)的條件下,是否存在實數,使得弦
的垂直平分線
過點
?若存在,求出實數
的值;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節油降耗技術發行后生產甲產品過程中記錄的產量 x (噸)與相應的生產能耗y(噸標準煤)的幾組對應數據.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出 y 關于 x 的線性回歸方程
(3)已知該廠技改前 100 噸甲產品的生產能耗為 90 噸標準煤,試根據(2)求出的線性回歸方程,預測生產100 噸甲產品的生產能耗比技改前降低多少噸標準煤?(參考數值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為偶函數.
(1)求實數的值;
(2)記集合,
,
,判斷
與
的關系;
(3)當 (m>0,n>0)時,若函數f(x)的值域為[2-3m,2-3n],求m,n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設G為△ABC的重心,過G作直線l分別交線段AB,AC(不與端點重合)于P,Q.若 =λ
,
=μ
.
(1)求 的值;
(2)求λμ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,平面平面
,四邊形
是菱形,四邊形
是矩形,
,
,
,
是
的中點.
(Ⅰ)求證:平面
;
(II)在線段上是否存在一點
,使三棱錐
的體積為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 且Sn=2n﹣1.數列{bn}滿足b1=2,bn+1﹣2bn=8an .
(1)求數列{an}的通項公式.
(2)證明:數列{ }為等差數列,并求{bn}的通項公式.
(3)求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于回歸分析的說法中錯誤的是( )
A. 回歸直線一定過樣本中心
B. 殘差圖中殘差點比較均勻地落在水平的帶狀區域中,說明選用的模型比較合適
C. 兩個模型中殘差平方和越小的模型擬合的效果越好
D. 甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數{an}:a1=t,n2Sn+1=n2(Sn+an)+an2 , n=1,2,….
(1)設{an}為等差數列,且前兩項和S2=3,求t的值;
(2)若t= ,證明:
≤an<1.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com