【題目】已知命題p:函數f(x)=x2+2mx+1在(-2,+∞)上單調遞增;命題q:函數g(x)=2x2+2(m-2)x+1的圖象恒在x軸上方,若p∨q為真,p∧q為假,求m的取值范圍.
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為梯形,,
,
,
平面ABCD.
求BE與平面EAC所成角的正弦值;
線段BE上是否存在點M,使平面
平面DFM?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點分別是
,
,且點
在橢圓
上.
(1)求橢圓的標準方程;
(2)設橢圓的左頂點為
,過點
的直線
與橢圓
相交于異于
的不同兩點
,
,求
的面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若兩直線的傾斜角分別為
與
,則下列四個命題中正確的是( )
A. 若<
,則兩直線的斜率:k1 < k2 B. 若
=
,則兩直線的斜率:k1= k2
C. 若兩直線的斜率:k1 < k2 ,則<
D. 若兩直線的斜率:k1= k2 ,則
=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程(t為參數),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為:
.
Ⅰ
直線l的參數方程化為極坐標方程;
Ⅱ
求直線l與曲線C交點的極坐標
其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若對于曲線f(x)=-ex-x(e為自然對數的底數)的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1⊥l2,則實數a的取值范圍為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com