【題目】對于函數,若存在
,使
成立,則稱
為函數
的不動點,已知
.
(1)若有兩個不動點為
,求函數
的零點;
(2)若時,函數
沒有不動點,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】試題分析:(1)由不動點的定義可知: 為
兩根,結合根與系數關系可求得
的值;易得函數
,令
, 求出方程的根,從而可求得函數
的零點;(2)由函數
沒有不動點可得方程
無實數根,由
即可求得實數
的取值范圍.
試題解析:(1)由題意知:f(x)=x,即x2+(b-1)x+c=0有兩根,分別為-3,2.
所以,所以
,從而f(x)=x2+2x-6,
由f(x)=0得x1=-1-,x2=-1+
.
故f(x)的零點為-1±.
(2)若c=,則f(x)=x2+bx+
,
又f(x)無不動點,
即方程x2+bx+=x無解,
所以(b-1)2-b2<0.
即-2b+1<0,所以b>.故b的取值范圍是b>
.
科目:高中數學 來源: 題型:
【題目】已知函數
的圖象過點
。
(1)求的值并求函數
的值域;
(2)若關于的方程
有實根,求實數
的取值范圍;
(3)若函數,
,則是否存在實數
,使得函數
的最大值為0?若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與函數
的圖像相切于點
.
(1)求實數的值;
(2)證明除切點外,直線
總在函數
的圖像的上方;
(3)設是兩兩不相等的正實數,且
成等比數列,試判斷
與
的大小關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某投資人欲將5百萬元獎金投入甲、乙兩種理財產品,根據銀行預測,甲、乙兩種理財產品的收益與投入獎金的關系式分別為
,其中
為常數且
.設對乙種產品投入獎金
百萬元,其中
.
(1)當時,如何進行投資才能使得總收益
最大;(總收益
)
(2)銀行為了吸儲,考慮到投資人的收益,無論投資人獎金如何分配,要使得總收益不低于,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對數的底數).
(1)判斷f(x)的單調性;
(2)當f(x)<0在(0,+∞)上恒成立時,求a的取值范圍;
(3)證明:當x∈(0,+∞)時, (1+x)
<e.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為創建全國文明城市,某區向各事業行政單位征集“文明過馬路”義務督導員.從符合條件的600名志愿者中隨機抽取100名,按年齡作分組如下:,
,
,
,
,并得到如下頻率分布直方圖.
(I)求圖中的值,并根據頻率分布直方圖統計這600名志愿者中年齡在
的人數;
(II)在抽取的100名志愿者中按年齡分層抽取5名參加區電視臺“文明伴你行”節目錄制,再從這5名志愿者中隨機抽取2名到現場分享勸導制止行人闖紅燈的經歷,求至少有1名年齡不低于35歲的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班同學利用國慶節進行社會實踐,對[25,55]歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統計表和各年齡段人數頻率分布直方圖:
組數 | 分組 | 低碳族的人數 | 占本組的頻率 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | 0.4 | |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55] | 15 | 0.3 |
(1)補全頻率分布直方圖并求 的值;
(2)從年齡段在[40,50)的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領隊,求選取的2名領隊中恰有1人年齡在[4,45)歲的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com