精英家教網 > 高中數學 > 題目詳情

(12分)(I)求函數圖象上的點處的切線方程;
(Ⅱ)已知函數,其中是自然對數的底數,
對于任意的,恒成立,求實數的取值范圍。

(1) (2)

解析試題分析:解:(Ⅰ);          2分
由題意可知切點的橫坐標為1,
所以切線的斜率是,               1分
切點縱坐標為,故切點的坐標是
所以切線方程為,即.          2分
(II)問題即,         1分
1)當
  ,所以無解。          (2分)
2)當時,
,則 
  ,所以無解。           (2分)
時,當單調遞減;當單調遞增。
綜上可知                 (2分)
考點:導數的運用
點評:根據導數求解函數的單調性,以及函數 極值和最值,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)判斷奇偶性, 并求出函數的單調區間;
(2)若函數有零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖象經過點M(1,4),曲線在點M處的切線恰好與直線垂直。
(1)求實數的值;
(2)若函數在區間上單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,().
(1)求函數的極值;
(2)已知,函數, ,判斷并證明的單調性;
(3)設,試比較,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若,求曲線處的切線方程;
(2)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設曲線在點處的切線斜率為,且,對一切實數,不等式恒成立
(1) 求的值;
(2) 求函數的表達式;
(3) 求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(I)若,求函數的極小值,
(Ⅱ)若,設,函數.若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是二次函數,不等式的解集是,且在點處的切線與直線平行.求的解析式;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

理科(本小題14分)已知函數,當時,函數取得極大值.
(Ⅰ)求實數的值;(Ⅱ)已知結論:若函數在區間內導數都存在,且,則存在,使得.試用這個結論證明:若,函數,則對任意,都有;(Ⅲ)已知正數滿足求證:當,時,對任意大于,且互不相等的實數,都有

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视