【題目】已知數列的前
項和為
,且
.
(Ⅰ)求的值;
(Ⅱ)求證:
.
【答案】(1) ; (2)見解析.
【解析】
(I).可得a1=S1=1﹣1=0,a1+a2=22+1,a1+a2+a3=32﹣1,聯立解
得a1,a2,a3.(II)n≥2時,an=Sn﹣Sn﹣1=2n﹣1+2(﹣1)n.當n為偶數時,an=2n+1;
當n為奇數時,an=2n﹣3(n>1).利用等差數列的求和公式即可得出.
(I)解:∵.∴a1=S1=1﹣1=0,a1+a2=22+1,a1+a2+a3=32﹣1,
聯立解得:a1=0,a2=5,a3=3.
(II)證明:n≥2時,an=Sn﹣Sn﹣1=n2+(﹣1)n﹣[(n﹣1)2+(﹣1)n﹣1]
=2n﹣1+2(﹣1)n.
當n為偶數時,an=2n+1;當n為奇數時,an=2n﹣3(n>1).
∴a1+a3+a5+…+a2n+1=0+3+7+……+2(2n+1)﹣3==2n2+n.
a2+a4+a6+…+a2n=5+9+……+(2n+1)==2n2+3n.
∵2n2+3n﹣(2n2+n)=2n>0.
∴a1+a3+a5+…+a2n+1<a2+a4+a6+…+a2n.
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的左頂點為
,過右焦點
的直線交橢圓于
,
兩點,直線
,
分別交直線
于點
,
.
(1)試判斷以線段為直徑的圓是否過點
,并說明理由;
(2)記,
,
的斜率分別為
,
,
,證明:
,
,
成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平行四邊形所在平面與直角梯形
所在平面互相垂直,且
,
為
中點.
(1)求異面直線與
所成的角;
(2)求平面與平面
所成的二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知+1(
)在(0,+∞)內有且只有一個零點,則
在[﹣1,1]上的值域為
A. [﹣4,0] B. [﹣4,1] C. [﹣1,3] D. [﹣,12]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中,
平面
,
,點
分別為
的中點,設直線
與平面
交于點
.
(1)已知平面平面
,求證:
.
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com