【題目】已知函數,其中
.
(1)函數的圖象能否與
軸相切?若能,求出實數
,若不能,請說明理由;
(2)討論函數的單調性.
【答案】(1)見解析;(2)見解析.
【解析】分析:第一問首先對函數求導,之后設出切點坐標,應用切線的斜率等于零以及對應點處的函數值等于零,得到方程組無解,說明沒有滿足條件的點,從而得到結論;對于第二問,求出函數的導函數,結合其導數的符號,來確定函數在相應區間上的單調性.
詳解:(1)由于.
假設函數的圖象與
軸相切于點
,
則有,即
.
顯然,將
代入方程
中,
得.顯然此方程無解.
故無論取何值,函數
的圖象都不能與
軸相切.
(2)由于,
當時,
,當
時,
,
遞增,
當時,
,
遞減;
當時,由
得
或
,
①當時,
,
當時,
,
遞增,
當時,
,
遞減,
當,
,
遞增;
②當時,
,
遞增;
③當時,
,
當時,
,
遞增,
當時,
,
遞減,
當時,
,
遞增.
綜上,當時,
在
上是減函數,在
上是增函數;
當時,
在
上是增函數,在
上是減函數;
當時,
在
上是增函數;
當時,
在
上是增函數,在
上是減函數.
科目:高中數學 來源: 題型:
【題目】定義新運算:當m≥n時,mn=m;當m<n時,mn=n.設函數f(x)=[(2x2)﹣(1log2x)]2x,則f(x)在(0,2)上值域為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小趙和小王約定在早上至
之間到某公交站搭乘公交車去上學,已知在這段時間內,共有
班公交車到達該站,到站的時間分別為
,
,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的最大值與最小值之和為a2+a+1(a>1).
(1)求a的值;
(2)判斷函數g(x)=f(x)-3在[1,2]的零點的個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓的離心率為
,橢圓的短軸端點與雙曲線
的焦點重合,過點
且不垂直于
軸的直線
與橢圓
相交于
兩點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】寫出下列命題的否定,并判斷真假:
(1)不論取何實數,方程
必有實數根;
(2)所有末位數字是0或5的整數都能被5整除;
(3)某些梯形的對角線互相平分;
(4)被8整除的數能被4整除.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校欲在甲、乙兩店采購某款投影儀,該投影儀原價為每臺2000元,甲店用如下方法促銷:買一臺單價為1950元,買二臺單價為1900元,每多買一臺,則所買各臺單價均再減50元,但最低不能低于1200元;乙店一律按原售價的80%促銷,學校需要購買臺投影儀,若在甲店購買費用為
元,若在乙店購買費用記為
.
(1)分別求出和
的解析式;
(2)當購買臺時,在哪家店買更省錢?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(x,y)在不等式組表示的平面區域內運動,則z=x-y的取值范圍是( )
A. [-2,-1] B. [-2,1] C. [-1,2] D. [1,2]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com