【題目】千百年來,我國勞動人民在生產實踐中根據云的形狀、走向、速度、厚度、顏色等的變化,總結了豐富的“看云識天氣”的經驗,并將這些經驗編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學為了驗證“日落云里走,雨在半夜后”,觀察了所在地區的
天日落和夜晚天氣,得到如下
列聯表:
夜晚天氣日落云里走 | 下雨 | 未下雨 |
出現 | ||
未出現 |
參考公式:.
臨界值表:
(1)根據上面的列聯表判斷能否有的把握認為“當晚下雨”與“‘日落云里走’出現”有關?
(2)小波同學為進一步認識其規律,對相關數據進行分析,現從上述調查的“夜晚未下雨”天氣中按分層抽樣法抽取天,再從這
天中隨機抽出
天進行數據分析,求抽到的這
天中僅有
天出現“日落云里走”的概率.
科目:高中數學 來源: 題型:
【題目】年
月
日,國務院總理李克強在做政府工作報告時說,打好精準脫貧攻堅戰.江西省貧困縣脫貧摘帽取得突破性進展:
年,穩定實現扶貧對象“兩不愁、三保障”,貧困縣全部退出.圍繞這個目標,江西正著力加快增收步伐,提高救助水平,改善生活條件,打好產業扶貧、保障扶貧、安居扶貧三場攻堅戰.為響應國家政策,老張自力更生開了一間小型雜貨店.據長期統計分析,老張的雜貨店中某貨物每天的需求量
在
與
之間,日需求量
(件)的頻率
分布如下表所示:
己知其成本為每件元,售價為每件
元若供大于求,則每件需降價處理,處理價每件
元.
(1)設每天的進貨量為,視日需求量
的頻率為概率
,求在每天進貨量為
的條件下,日銷售量
的期望值
(用
表示);
(2)在(1)的條件下,寫出和
的關系式,并判斷
為何值時,日利潤的均值最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,若滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界
(1)設,判斷
在
上是否是有界函數,若是,說明理由,并寫出
所有上界的值的集合;若不是,也請說明理由.
(2)若函數在
上是以
為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,圓
,動圓P與圓M外切并且與圓N內切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)設不經過點的直線l與曲線C相交于A,B兩點,直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一年度未發生有責任道路交通事故 | 下浮10% | |
上兩年度未發生有責任道路交通事故 | 下浮 | |
上三年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任不涉及死亡的道路交通事故 | 上浮10% | |
上一個年度發生有責任交通死亡事故 | 上浮30% | |
某機構為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】蜂巢是由工蜂分泌蜂蠟建成的從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個全等的菱形面構成,菱形的一個角度是,這樣的設計含有深刻的數學原理、我國著名數學家華羅庚曾專門研究蜂巢的結構著有《談談與蜂房結構有關的數學問題》.用數學的眼光去看蜂巢的結構,如圖,在六棱柱
的三個頂點A,C,E處分別用平面BFM,平面BDO,平面DFN截掉三個相等的三棱錐
,
,
,平面BFM,平面BDO,平面DFN交于點P,就形成了蜂巢的結構.如圖,設平面PBOD與正六邊形底面所成的二面角的大小為
,則有:( )
A.B.
C.D.以上都不對
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直角坐標系xOy中,已知MN是圓C:(x﹣2)2+(y﹣3)2=2的一條弦,且CM⊥CN,P是MN的中點.當弦MN在圓C上運動時,直線l:x﹣y﹣5=0上總存在兩點A,B,使得恒成立,則線段AB長度的最小值是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點為
,
,上、下頂點為
,
,四邊形
是面積為2的正方形.
(1)求橢圓的標準方程;
(2)已知點,過點
的直線
與橢圓交于
,
兩點,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com