【題目】已知雙曲線:
(
,
)的左、右焦點分別為
,
,過點
且斜率為
的直線交雙曲線于
,
兩點,線段
的垂直平分線恰過點
,則該雙曲線的離心率為( )
A.B.
C.
D.
【答案】D
【解析】
利用雙曲線的定義,分別將AF1,BF1表示出來,再利用直線的斜率及傾斜角的關系,將所有邊長用a,c來表示,最后利用直角三角形的關系,列出a,c的方程,再求離心率。
連接AF2,BF2,記A,B中點為N,根據題意知:AF2=BF2,所以設AF2=BF2=m,并且NF2垂直AB,由于過點F1的直線斜率為,設直線的傾斜角為
,所以在直角三角形F1F2N中,
,根據雙曲線的定義:AF1-AF2=2a,所以:AF1=2a+m,同理:BF1=m-2a;由AB=AF1-BF1,所以AB=4a,則AN=BN=2a,
故:BF1=NF1-BN=-2a因此:m=
;在直角三角形ANF2中,
,從而解得離心率 :
故選:D
科目:高中數學 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且(a+b﹣c)(sinA+sinB+sinC)=bsinA.
(1)求C;
(2)若a=2,c=5,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線l的參數方程為(t為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=4acosθ,直線l與曲線C交于不同的兩點M,N.
(1)求實數a的取值范圍;
(2)已知a>0,設點P(﹣1,﹣2),若|PM|,|MN|,|PN|成等比數列,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】1772年德國的天文學家波得發現了求太陽的行星距離的法則,記地球距離太陽的平均距離為10,可以算得當時已知的六大行星距離太陽的平均距離如下表:
星名 | 水星 | 金星 | 地球 | 火星 | 木星 | 土星 |
與太陽的距離 | 4 | 7 | 10 | 16 | 52 | 100 |
除水星外,其余各星與太陽的距離都滿足波得定則(某一數列規律),當時德國數學家高斯根據此定則推算,火星和木星之間距離太陽28還有一顆大行星,1801年,意大利天文學家皮亞齊經過觀測,果然找到了火星和木星之間距離太陽28的谷神星以及它所在的小行星帶,請你根據這個定則,估算從水星開始由近到遠算,第10個行星與太陽的平均距離大約是( )
A.388B.772C.1540D.3076
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線過橢圓
的右焦點
,拋物線
的焦點為橢圓
的上頂點,且
交橢圓
于
兩點,點
在直線
上的射影依次為
.
(1)求橢圓的方程;
(2)若直線交
軸于點
,且
,當
變化時,證明:
為定值;
(3)當變化時,直線
與
是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,
是拋物線
:
的焦點,
是拋物線
上位于第一象限內的任意一點,過
,
,
三點的圓的圓心為
.
(1)是否存在過點,斜率為
的直線
,使得拋物線
上存在兩點關于直線
對稱?若存在,求出
的范圍;若不存在,說明理由;
(2)是否存在點,使得直線
與拋物線
相切于點
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年國際乒聯總決賽在韓國仁川舉行,比賽時間為12月13﹣12月16日,在男子單打項目,中國隊準備選派4人參加.已知國家一線隊共6名隊員,二線隊共4名隊員.
(1)求恰好有3名國家一線隊隊員參加比賽的概率;
(2)設隨機變量X表示參加比賽的國家二線隊隊員的人數,求X的分布列;
(3)男子單打決賽是林高遠(中國)對陣張本智和(日本),比賽采用七局四勝制,已知在每局比賽中,林高遠獲勝的概率為,張本智和獲勝的概率為
,前兩局比賽雙方各勝一局,且各局比賽的結果相互獨立,求林高遠獲得男子單打冠軍的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com