精英家教網 > 高中數學 > 題目詳情

已知函數,當時,有極大值;
(1)求的值;
(2)求函數的極小值。

(1)
(2)0

解析試題分析:解:(1)時,,
   6分
(2),令,得
          12分
考點:導數的運用
點評:主要是考查了導數的計算以及根據導數的符號來判定函數單調性,進而得到極值,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,
(Ⅰ)若,求函數的極值;
(Ⅱ)設函數,求函數的單調區間;
(Ⅲ)若在區間)上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若,試求函數的單調區間;
(2)過坐標原點作曲線的切線,證明:切點的橫坐標為1;
(3)令,若函數在區間(0,1]上是減函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數
(1)若,證明;
(2)若不等式都恒成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數在點處取得極小值-4,使其導數的取值范圍為,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經過原點,求直線的方程及切點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的導數為實數,.
(Ⅰ)若在區間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的條件下,求經過點且與曲線相切的直線的方程;
(Ⅲ)設函數,試判斷函數的極值點個數。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知.
(Ⅰ)時,求證內是減函數;
(Ⅱ)若內有且只有一個極值點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的極值點與極值;
(2)設的導函數,若對于任意,且恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视