已知橢圓的中心在原點,焦點在軸上,焦距為
,且經過點
,直線
交橢圓于不同的兩點A,B.
(1)求的取值范圍;,
(2)若直線不經過點
,求證:直線
的斜率互為相反數.
(1);(2)證明過程詳見解析.
解析試題分析:本題主要考查橢圓的標準方程、韋達定理等基礎知識,考查運算求解能力、綜合分析和解決問題的能力.第一問,用待定系數法,先設出橢圓方程,根據焦距和橢圓過,解出
,得到橢圓方程,由于直線與橢圓有2個交點,所以聯立得到的關于
的方程有2個不相等實根,所以利用
求解;第二問,分析題意得只需證明
,設出
點坐標,利用第一問得出的關于
的方程找到
,將
化簡,把
的結果代入即可得證.
試題解析:(1)設橢圓的方程為,因為
,所以
,
又因為橢圓過點,所以
,解得
,故橢圓方程為
. 3分
將代入
并整理得
,
,解得
. 6分
(2)設直線的斜率分別為
和
,只要證明
.
設,則
,
. 9分
,
分子
所以直線的斜率互為相反數. 12分
考點:1.橢圓的標準方程;2.韋達定理.
科目:高中數學 來源: 題型:解答題
已知雙曲線(a>0,b>0)的離心率
,過點A(0,-b)和B(a,0)的直線與原點的距離是
.
(Ⅰ)求雙曲線的方程及漸近線方程;
(Ⅱ)若直線y=kx+5 (k≠0)與雙曲線交于不同的兩點C、D,且兩點都在以A為圓心的同一個圓上,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
點P是橢圓外的任意一點,過點P的直線PA、PB分別與橢圓相切于A、B兩點。
(1)若點P的坐標為,求直線
的方程。
(2)設橢圓的左焦點為F,請問:當點P運動時,是否總是相等?若是,請給出證明。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線,點P(-1,0)是其準線與
軸的焦點,過P的直線
與拋物線C交于A、B兩點.
(1)當線段AB的中點在直線上時,求直線
的方程;
(2)設F為拋物線C的焦點,當A為線段PB中點時,求△FAB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C長軸的兩個頂點為A(-2,0),B(2,0),且其離心率為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若N是直線x=2上不同于點B的任意一點,直線AN與橢圓C交于點Q,設直線QB與以NB為直徑的圓的一個交點為M(異于點B),求證:直線NM經過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com