精英家教網 > 高中數學 > 題目詳情

【題目】某專賣店為了對新產品進行合理定價,將該產品按不同的單價試銷,調查統計如下表:

售價(元)

4

5

6

7

8

周銷量(件)

90

85

83

79

73

1)求周銷量y(件)關于售價x(元)的線性回歸方程

2)按(1)中的線性關系,已知該產品的成本為2/件,為了確保周利潤大于598元,則該店應該將產品的售價定為多少?

參考公式:.

參考數據:

【答案】1;(214

【解析】

1)由表中數據求得,結合參考數據可得.再代入方程即可求得線性回歸方程.

2)設售價為,代入(1)中的回歸方程,求得銷量.即可求得利潤的表達式.由于周利潤大于598,得不等式后,解不等式即可求解.

1)由表可得,因為,

由參考數據,,

所以代入公式可得,

,

所以線性回歸方程

2)設售價為,由(1)知周銷量為,

所以利潤,

解得,因為,.

所以為了確保周利潤大于598,則該店應該將產品的售價定為14.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某縣大潤發超市為了惠顧新老顧客,決定在2019年元旦來臨之際舉行“慶元旦,迎新年”的抽獎派送禮品活動.為設計一套趣味性抽獎送禮品的活動方案,該超市面向該縣某高中學生征集活動方案.該中學某班數學興趣小組提供的方案獲得了征用.方案如下:將一個的正方體各面均涂上紅色,再把它分割成64個相同的小正方體.經過攪拌后,從中任取兩個小正方體,記它們的著色面數之和為,記抽獎中獎的禮金為.

(Ⅰ)求

(Ⅱ)凡是元旦當天在超市購買物品的顧客,均可參加抽獎.記抽取的兩個小正方體著色面數之和為6,設為一等獎,獲得價值50元禮品;記抽取的兩個小正方體著色面數之和為5,設為二等獎,獲得價值30元禮品;記抽取的兩個小正方體著色面數之和為4,設為三等獎,獲得價值10元禮品,其他情況不獲獎.求某顧客抽獎一次獲得的禮金的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,平面底面的中點,是棱上的點,,,

1求證:平面平面;

2,求二面角的大小

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,為線段的中點,為線段上的一點.

(1)證明:平面平面.

(2)若,二面角的余弦值為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知點在圓柱的底面上,,分別為的直徑,且.若圓柱的體積,回答下列問題:

1)求三棱錐的體積.

2)在線段AP上是否存在一點M,使異面直線OM所成的角的余弦值為?若存在,請指出點M的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列的首項為,公差為,前n項和為,且滿足,.

1)證明;

2)若,當且僅當時,取得最小值,求首項的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其圖象的相鄰兩條對稱軸之間的距離為

1)求函數的解析式及對稱中心;

2)將函數的圖象向左平移個單位長度,再向上平移個單位長度得到函數的圖象,若關于x的方程在區間上有兩個不相等的實根,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)證明函數在定義域上單調遞增;

2)求函數的值域;

3)令,討論函數零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為邊長為2的菱形,,,面,點為棱的中點.

(1)在棱上是否存在一點,使得,并說明理由;

(2)當二面角的余弦值為時,求直線與平面所成的角.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视