精英家教網 > 高中數學 > 題目詳情
已知數列{log2(an-2)}(n∈N*)為等差數列,且a1=5,a3=29.
(1)求數列{an}的通項公式;
(2)對任意n∈N*,
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<m
恒成立的實數m是否存在最小值?如果存在,求出m的最小值;如果不存在,說明理由.
分析:(1)設等差數列{log3(an-2)}的公差為d.根據a1和a3的值求得d,進而根據等差數列的通項公式求得數列{log3(an-2)}的通項公式,進而求得an
(2)把(1)中求得的an代入
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
中,進而根據等比數列的求和公式求得
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=1-
1
2n
,即可得出答案.
解答:解:(1)設等差數列{log3(an-2)}的公差為d.
由a1=5,a3=29得log327=log33+2d,即d=1.
所以log2(an-2)=1+(n-1)×1=n,即an=2n+2.
(2)證明:因為
1
an+1-an
=
1
2n+1-2n
=
1
2n
,
所以
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=
1
21
+
1
22
+
1
23
+…+
1
2n
=
1
2 
-
1
2n
×
1
2
1-
1
2
=1-
1
2n
,
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<m
恒成立,
即1-
1
2n
<m,由于1-
1
2n
<1,
∴m≥1.
故存在m的最小值1,使得對任意n∈N*
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<m
恒成立.
點評:本題考查等差、等比數列的性質與存在性問題,注意與對數函數或指數函數的結合運用時,往往同時涉及等比、等差數列的性質,是一個難點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{log2(an-1)}(n∈N*)為等差數列,且a1=3,a3=9.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)證明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{log2(an-1)}(n∈N*)為等差數列,且a1=3,a2=5,則
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=( 。
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{log2(an-1)}(n∈N*)為等差數列,且a1=3,a3=9
(1)求數列{an}的通項公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整數n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{log2(an-1)}(n∈N+)為等差數列,且a1=3,a2=5,則
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•撫州模擬)已知數列{log2(an-1)}(n∈N*)為等差數列,且a1=3,a2=5,則
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视