精英家教網 > 高中數學 > 題目詳情

已知某圓的極坐標方程為(I)將極坐標方程化為普通方程,并選擇恰當的參數寫出它的參數方程;(II)若點在該圓上,求的最大值和最小值.

 

【答案】

(Ⅰ) (為參數);

(Ⅱ)最大值為6,最小值為2。

【解析】

試題分析:(Ⅰ);         3分

 (為參數)         5分

(Ⅱ)因為,所以其最大值為6,最小值為2         10分

考點:簡單曲線的極坐標方程、參數方程,參數方程的應用,三角函數的值域。

點評:簡單題,本題具有一定綜合性,但思路比較清晰,難度不大。利用曲線的參數方程,將問題轉化成三角函數問題求解,是參數方程的常見應用問題。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標方程化為普通方程;并選擇恰當的參數寫出它的參數方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關于x的不等式|x+2|+|x-1|≥a的解集為R,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知某圓的極坐標方程為ρ2-4
2
ρcos(θ-
π
4
)+6=0.
(1)將極坐標方程化為普通方程,并選擇恰當的參數寫出它的參數方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.(5分)

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知某圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.將極坐標方程化為普通方程;并選擇恰當的參數寫出它的參數方程.
(2)已知二階矩陣M有特征值λ=8及對應的一個特征向量e1=
.
1
1
.
,且矩陣M對應的變換將點(-1,2)變換成
(-2,4).求矩陣M的另一個特征值及對應的一個特征向量e2的坐標之間的關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0.
(1)將極坐標方程化為普通方程;并選擇恰當的參數寫出它的參數方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•?谀M)已知某圓的極坐標方程是p2-4
2
pcos(θ-
π
4
)+6=0

求:
(1)求圓的普通方程和一個參數方程;
(2)圓上所有點(x,y)中xy的最大值和最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视