【題目】已知橢圓的右焦點為
,點
在橢圓
上,且點
到點
的最大距離為
,點
到點
的最小距離為
.
(1)求橢圓的標準方程;
(2)若直線交橢圓
于
、
兩點,坐標原點
到直線
的距離為
,求
面積的最大值.
科目:高中數學 來源: 題型:
【題目】如圖1,在等腰中,
,
,
分別為
,
的中點,
為
的中點,
在線段
上,且
。將
沿
折起,使點
到
的位置(如圖2所示),且
。
(1)證明:平面
;
(2)求平面與平面
所成銳二面角的余弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年9月1日,《西安市生活垃圾分類管理辦法》正式實施.根據規定,生活垃圾分為可回收物、有害垃圾、廚余垃圾和其他垃圾,個人和單位如果不按規定進行垃圾分類將面臨罰款,并納入征信系統.為調查市民對垃圾分類的了解程度,某調查小組隨機抽取了某小區的100位市民,請他們指出生活中若干項常見垃圾的種類,把能準確分類不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.調查結果如下:
0項 | 1項 | 2項 | 3項 | 4項 | 5項 | 5項以上 | |
男(人) | 1 | 5 | 15 | 8 | 6 | 7 | 3 |
女(人) | 0 | 4 | 11 | 13 | 10 | 12 | 5 |
(1)完成如下列聯表并判斷是否有99%的把握認為了解垃圾分類與性別有關?
比較了解 | 不太了解 | 合計 | |
男 | |||
女 | |||
合計 |
(2)從對垃圾分類比較了解的市民中用分層抽樣的方式抽取8位,現從這8位市民中隨機選取兩位,求至多有一位男市民的概率.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱的棱長均為2,O為AC的中點,平面A'OB⊥平面ABC,平面
⊥平面ABC.
(1)求證:A'O⊥平面ABC;
(2)求二面角A﹣BC﹣C'的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年上半年我國多個省市暴發了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業和散戶防控疫情,擴大生產;另一方面積極向多個國家開放豬肉進口,擴大肉源,確保市場供給穩定.某大型生豬生產企業分析當前市場形勢,決定響應政府號召,擴大生產決策層調閱了該企業過去生產相關數據,就“一天中一頭豬的平均成本與生豬存欄數量之間的關系”進行研究.現相關數據統計如下表:
生豬存欄數量 | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據以上數據認為與
具有線性回歸關系,請幫他求出
關于
的線.性回歸方程
(保留小數點后兩位有效數字)
(2)研究員乙根據以上數據得出與
的回歸模型:
.為了評價兩種模型的擬合效果,請完成以下任務:
①完成下表(計算結果精確到0.01元)(備注:稱為相應于點
的殘差);
生豬存欄數量 | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分別計算模型甲與模型乙的殘差平方和及
,并通過比較
的大小,判斷哪個模型擬合效果更好.
(3)根據市場調查,生豬存欄數量達到1萬頭時,飼養一頭豬每一天的平均收入為7.5元;生豬存欄數量達到1.2萬頭時,飼養一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)
參考公式:.
參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現給出兩個條件:①,②
,從中選出一個條件補充在下面的問題中,并以此為依據求解問題:(選出一種可行的條件解答,若兩個都選,則按第一個解答計分)在
中,
分別為內角
所對的邊( ).
(1)求;
(2)若,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com