精英家教網 > 高中數學 > 題目詳情
設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,離心率為
1
2
,左焦點F1到直線l:x-
3
y-3=0
的距離等于長半軸長.
(I)求橢圓C的方程;
(II)過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,線段MN的中垂線與x軸相交于點P(m,O),求實數m的取值范圍.
(I)由已知
c
a
=
1
2
,可得F1(-
1
2
a,0),
由F1到直線l的距離為a,所以
|-
1
2
a-3|
2
=a
,
解得a=2,所以c=1,b2=a2-c2=3,得b=
3

所以所求橢圓C的方程為
x2
4
+
y2
3
=1
;
(II)由(I)知F2(1,0),設直線l的方程為:y=k(x-1),
y=k(x-1)
x2
4
+
y2
3
=1
消去y得(3+4k2)x2-8k2x+4k2-12=0,
因為l過點F2,所以△>0恒成立,
設M(x1,y1),N(x2,y2),
x1+x2=
8k2
3+4k2
,y1+y2=k(x1+x2-2)=
-6k
3+4k2

所以MN中點(
4k2
3+4k2
,
-3k
3+4k2
),
當k=0時,MN為長軸,中點為原點,則m=0,
當k≠0時MN中垂線方程為y+
3k
3+4k2
=-
1
k
(x-
4k2
3+4k2
)
,
令y=0,得m=
k2
3+4k2
=
1
3
k2
+4
,
因為
3
k2
>0
,所以
1
k2
+4>4
,可得0<m<
1
4
,
綜上可知實數m的取值范圍是[0,
1
4
).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦點為F,它與直線l:y=k(x+1)相交于P、Q兩點,l與x軸的交點M到橢圓左準線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項.
(1)求橢圓離心率e;
(2)設N與M關于原點O對稱,若以N為圓心,b為半徑的圓與l相切,且
OP
OQ
=-
5
3
求橢圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦點分別為F1F2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0

(1)若過A.Q.F2三點的圓恰好與直線l:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M.N兩點.試證明:
1
|F2M|
+
1
|F2N|
為定值;②在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•鹽城一模)設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
恒過定點A(1,2),則橢圓的中心到準線的距離的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦點分別為F1,F2,若P 是橢圓上的一點,|
PF1
|+|
PF2
|=4
,離心率e=
3
2

(1)求橢圓C的方程;
(2)若P 是第一象限內該橢圓上的一點,
PF1
PF2
=-
5
4
,求點P的坐標;
(3)設過定點P(0,2)的直線與橢圓交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點分別為F1,F2,離心率為e=
2
2
,以F1為圓心,|F1F2|為半徑的圓與直線x-
3
y-3=0
相切.
(I)求橢圓C的方程;
(II)直線y=x交橢圓C于A、B兩點,D為橢圓上異于A、B的點,求△ABD面積的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视