【題目】某工廠生產甲、乙兩種產品所得利潤分別為P和Q(萬元),它們與投入資金m(萬元)的關系有經驗公式P= m+65,Q=76+4
,今將150萬元資金投入生產甲、乙兩種產品,并要求對甲、乙兩種產品的投資金額不低于25萬元.
(1)設對乙產品投入資金x萬元,求總利潤y(萬元)關于x的函數關系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?
【答案】
(1)解:根據題意,對乙種商品投資x(萬元),對甲種商品投資(150﹣x)(萬元)(25≤x≤125).
所以y= (150﹣x)+65+76+4
其定義域為[25,125]
(2)解:令t= ,
因為x∈[25,125],
所以t∈[5,5 ],有y=﹣
+203
所以當t=6時,即x=36時,ymax=203
答:當甲商品投入114萬元,乙商品投入36萬元時,總利潤最大為203萬元
【解析】(1)根據題意,對乙種商品投資x(萬元),對甲種商品投資(150﹣x)(萬元),利用經驗公式,可求經營甲、乙兩種商品的總利潤y(萬元)關于x的函數表達式;(2)利用配方法,可求總利潤y的最大值.
科目:高中數學 來源: 題型:
【題目】現代城市大多是棋盤式布局(如上海道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點間的距離往往不是指兩點間的直線距離(位移),而是實際路程(如圖).在直角坐標平面內,我們定義A(x1 , y1)、B(x2 , y2)兩點間的“直角距離”為:D(AB)=|x1﹣x2|+|y1﹣y2|.
(1)在平面直角坐標系中,寫出所有滿足到原點的“直角距離”
為2的“格點”的坐標;(格點指橫、縱坐標均為整數的點)
(2)定義:“圓”是所有到定點“直角距離”為定值的點組成的圖形,點A(1,3),B(1,1),C(3,3),求經過這三個點確定的一個“圓”的方程,并畫出大致圖象;
(3)設P(x,y),集合B表示的是所有滿足D(PO)≤1的點P所組成的集合,
點集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},
求集合Q={(x,y)|x=x1+x2 , y=y1+y2 , (x1 , y1)∈A,(x2 , y2)∈B}所表示的區域的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列結論: ①已知函數f(x)是定義在R上的奇函數,若f(﹣1)=2,f(﹣3)=﹣1,則f(3)<f(﹣1);
②函數y=log (x2﹣2x)的單調遞增減區間是(﹣∞,0);
③已知函數f(x)是奇函數,當x≥0時,f(x)=x2 , 則當x<0時,f(x)=﹣x2;
④若函數y=f(x)的圖象與函數y=ex的圖象關于直線y=x對稱,則對任意實數x,y都有f(xy)=f(x)+f(y).
則正確結論的序號是(請將所有正確結論的序號填在橫線上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 是奇函數,f(x)=lg(10x+1)+bx是偶函數.
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數k的取值范圍.
(3)設 ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將正弦曲線y=sinx上所有的點向右平移 π個單位長度,再將圖象上所有點的橫坐標變為原來的
倍(縱坐標不變),則所得到的圖象的函數解析式y= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (e為自然對數的底數,e=2.71828…).
(1)證明:函數f(x)為奇函數;
(2)判斷并證明函數f(x)的單調性,再根據結論確定f(m2﹣m+1)+f(﹣ )與0的大小關系;
(3)是否存在實數k,使得函數f(x)在定義域[a,b]上的值域為[kea , keb].若存在,求出實數k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=sinωx(ω>0)的圖象向右平移 個單位后得到函數g(x)的圖象,若對于滿足|f(x1)﹣g(x2)|=2的x1 , x2 , 有|x1﹣x2|min=
,則f(
)的值為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com