已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.
(1)y=(2±)x或x+y+1=0或x+y-3=0;(2)
.
解析試題分析:(1)圓的方程化為標準方程,求出圓心與半徑,再分類討論,設出切線方程,利用直線是切線建立方程,即可得出結論;
(2)先確定P的軌跡方程,再利用要使|PM|最小,只要|PO|最小即可.
試題解析:(1)將圓C配方得:(x+1)2+(y-2)2=2.
①當直線在兩坐標軸上的截距為零時,設直線方程為y=kx,由直線與圓相切得:y=(2±)x.
②當直線在兩坐標軸上的截距不為零時,設直線方程為x+y-a=0,由直線與圓相切得:x+y+1=0或x+y-3=0.故切線方程為y=(2±)x或x+y+1=0或x+y-3=0.
(2)由|PO|=|PM|,得:=(x1+1)2+(y1-2)2-2⇒2x1-4y1+3=0.即點P在直線l:2x-4y+3=0上,當|PM|取最小值時即|OP|取得最小值,直線OP⊥l.
∴直線OP的方程為:2x+y=0.解方程組得P點坐標為
.
考點:直線和圓的方程的應用.
科目:高中數學 來源: 題型:解答題
已知橢圓上的點到橢圓右焦點
的最大距離為
,離心率
,直線
過點
與橢圓
交于
兩點.
(1)求橢圓的方程;
(2)上是否存在點
,使得當
繞
轉到某一位置時,有
成立?若存在,求出所有點
的坐標與
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標原點O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點且不與x軸重合的直線l與C1,C2的四個交點按縱坐標從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2.
(1)當直線l與y軸重合時,若S1=λS2,求λ的值;
(2)當λ變化時,是否存在與坐標軸不重合的直線l,使得S1=λS2?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com