【題目】甲、乙、丙三位同學進行羽毛球比賽,約定賽制如下:累計負兩場者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場比賽的勝者與輪空者進行下一場比賽,負者下一場輪空,直至有一人被淘汰;當一人被淘汰后,剩余的兩人繼續比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結束.經抽簽,甲、乙首先比賽,丙輪空.設每場比賽雙方獲勝的概率都為,
(1)求甲連勝四場的概率;
(2)求需要進行第五場比賽的概率;
(3)求丙最終獲勝的概率.
【答案】(1);(2)
;(3)
.
【解析】
(1)根據獨立事件的概率乘法公式可求得事件“甲連勝四場”的概率;
(2)計算出四局以內結束比賽的概率,然后利用對立事件的概率公式可求得所求事件的概率;
(3)列舉出甲贏的基本事件,結合獨立事件的概率乘法公式計算出甲贏的概率,由對稱性可知乙贏的概率和甲贏的概率相等,再利用對立事件的概率可求得丙贏的概率.
(1)記事件甲連勝四場,則
;
(2)記事件為甲輸,事件
為乙輸,事件
為丙輸,
則四局內結束比賽的概率為
,
所以,需要進行第五場比賽的概率為;
(3)記事件為甲輸,事件
為乙輸,事件
為丙輸,
記事件甲贏,記事件
丙贏,
則甲贏的基本事件包括:、
、
、
、
、
、
、
,
所以,甲贏的概率為.
由對稱性可知,乙贏的概率和甲贏的概率相等,
所以丙贏的概率為.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,由
經過伸縮變換
得到曲線
,以原點為極點,
軸非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程以及曲線
的直角坐標方程;
(2)若直線的極坐標方程為
,
與曲線
、曲線
在第一象限交于
、
,且
,點
的極坐標為
,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率
,且圓
過橢圓
的上,下頂點.
(1)求橢圓的方程.
(2)若直線的斜率為
,且直線
交橢圓
于
、
兩點,點
關于點的對稱點為
,點
是橢圓
上一點,判斷直線
與
的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
,且其離心率為
,過坐標原點
作兩條互相垂直的射線與橢圓
分別相交于
,
兩點.
(1)求橢圓的方程;
(2)是否存在圓心在原點的定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠接受了一項加工業務,加工出來的產品(單位:件)按標準分為A,B,C,D四個等級.加工業務約定:對于A級品、B級品、C級品,廠家每件分別收取加工費90元,50元,20元;對于D級品,廠家每件要賠償原料損失費50元.該廠有甲、乙兩個分廠可承接加工業務.甲分廠加工成本費為25元/件,乙分廠加工成本費為20元/件.廠家為決定由哪個分廠承接加工業務,在兩個分廠各試加工了100件這種產品,并統計了這些產品的等級,整理如下:
甲分廠產品等級的頻數分布表
等級 | A | B | C | D |
頻數 | 40 | 20 | 20 | 20 |
乙分廠產品等級的頻數分布表
等級 | A | B | C | D |
頻數 | 28 | 17 | 34 | 21 |
(1)分別估計甲、乙兩分廠加工出來的一件產品為A級品的概率;
(2)分別求甲、乙兩分廠加工出來的100件產品的平均利潤,以平均利潤為依據,廠家應選哪個分廠承接加工業務?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某沙漠地區經過治理,生態系統得到很大改善,野生動物數量有所增加.為調查該地區某種野生動物的數量,將其分成面積相近的200個地塊,從這些地塊中用簡單隨機抽樣的方法抽取20個作為樣區,調查得到樣本數據(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個樣區的植物覆蓋面積(單位:公頃)和這種野生動物的數量,并計算得,
,
,
,
.
(1)求該地區這種野生動物數量的估計值(這種野生動物數量的估計值等于樣區這種野生動物數量的平均數乘以地塊數);
(2)求樣本(xi,yi)(i=1,2,…,20)的相關系數(精確到0.01);
(3)根據現有統計資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區這種野生動物數量更準確的估計,請給出一種你認為更合理的抽樣方法,并說明理由.
附:相關系數r=,
≈1.414.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1:(a>b>0)的右焦點F與拋物線C2的焦點重合,C1的中心與C2的頂點重合.過F且與x軸垂直的直線交C1于A,B兩點,交C2于C,D兩點,且|CD|=
|AB|.
(1)求C1的離心率;
(2)設M是C1與C2的公共點,若|MF|=5,求C1與C2的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(理)某學校高一年級學生某次身體素質體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內,發布成績使用等級制各等級劃分標準見下表,規定:
三級為合格等級,
為不合格等級.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 |
為了解該校高一年級學生身體素質情況,從中抽取了名學生的原始成績作為樣本進行統計,按照
的分組作出頻率分布直方圖如圖所示,樣本中分數在80分及以上的所有數據的莖葉圖如圖所示.,
(1)求和頻率分布直方圖中的
的值;
(2)根據樣本估計總體的思想,以事件發生的頻率作為相應事件發生的概率,若在該校高一學生任選3人,求至少有1人成績是合格等級的概率;
(3)在選取的樣本中,從兩個等級的學生中隨機抽取了3名學生進行調研,記
表示所抽取的
名學生中為
等級的學生人數,求隨機變量
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,
,
,
(1)求在
處的切線的一般式方程;
(2)請判斷與
的圖像有幾個交點?
(3)設為函數
的極值點,
為
與
的圖像一個交點的橫坐標,且
,證明:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com