【題目】已知關于x的函數y=(m+6)x2+2(m﹣1)x+m+1恒有零點.
(1)求m的范圍;
(2)若函數有兩個不同零點,且其倒數之和為﹣4,求m的值.
【答案】
(1)解:當m+6=0時,m=﹣6,函數為y=﹣14x﹣5顯然有零點.
當m+6≠0時,m≠﹣6,由△=4(m﹣1)2﹣4(m+6)(m+1)=﹣36m﹣20≥0,得m≤﹣ .
∴當m≤﹣ 且m≠﹣6時,二次函數有零點.
綜上可得,m≤﹣ ,即m的范圍為(﹣∞,﹣
]
(2)解:設x1,x2是函數的兩個零點,則有 x1+x2=﹣ ,x1x2=
.
∵ +
=﹣4,即
=﹣4,
∴﹣ =﹣4,解得m=﹣3.
且當m=﹣3時,m+6≠0,△>0,符合題意,
∴m的值為﹣3
【解析】(1)當m+6=0時,即m=﹣6時,滿足條件.當m+6≠0時,由≥0求得m≤﹣ 且m≠﹣6.綜合可得m的范圍.(2)設x1,x2是函數的兩個零點,由條件并利用一元二次方程根與系數的關系求得m的值.
【考點精析】本題主要考查了二次函數的性質和函數的零點的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減;函數的零點就是方程的實數根,亦即函數的圖象與軸交點的橫坐標.即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某興趣小組有9名學生.若從9名學生中選取3人,則選取的3人中恰好有一個女生的概率是 .
(1)該小組中男女學生各多少人?
(2)9個學生站成一列隊,現要求女生保持相對順序不變(即女生 前后順序保持不變)重新站隊,問有多少種重新站隊的方法?(要求用數字作答)
(3)9名學生站成一列,要求男生必須兩兩站在一起,有多少種站隊的方法?(要求用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個半球和一個圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結果精確到0.1)?
(2)要在2 500個這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設全集U=R,集合M={x||x﹣ |
},P={x|﹣1≤x≤4},則(UM)∩P等于( )
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3<x≤4}
D.{x|3≤x≤4}
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com