精英家教網 > 高中數學 > 題目詳情
已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)記函數的最小值為,求證:.
(Ⅰ)的單調遞增區間為;的單調遞減區間為;
(Ⅱ)詳見解析

試題分析:(Ⅰ)先求導,再令導數等于0,討論導數的正負得函數的增減區間。(Ⅱ)由(Ⅰ)知,的最小值.令還是先求導再令導數等于0,討論導數的正負得函數的單調區間,從而可求得此函數的最值。
試題解析:解:
的定義域為.
.            2分
,解得(舍).
內變化時,的變化情況如下:

由上表知,的單調遞增區間為;的單調遞減區間為.
5分
(Ⅱ)由(Ⅰ)知,的最小值.         6分
,則.
,解得.                                  8分
內變化時,的變化情況如下:

所以函數的最大值為,即.
因為,所以.                    11分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若,求函數的單調區間;
(2)若以函數圖像上任意一點為切點的切線的斜率恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=aln xax-3(a∈R).
(1)若a=-1,求函數f(x)的單調區間;
(2)若函數yf(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數g(x)=x3x2 (f′(x)是f(x)的導函數)在區間(t,3)上總不是單調函數,求m的取值范圍;
(3)求證:×…×< (n≥2,n∈N*)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某地政府為科技興市,欲在如圖所示的矩形ABCD的非農業用地中規劃出一個高科技工業園區(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知其中AF是以A為頂點、AD為對稱軸的拋物線段.試求該高科技工業園區的最大面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數.
(1)求的單調區間;
(2)設函數,若當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)若上是增函數,求實數a的取值范圍;
(Ⅱ)證明:當a≥1時,證明不等式≤x+1對x∈R恒成立;
(Ⅲ)對于在(0,1)中的任一個常數a,試探究是否存在x0>0,使得>x0+1成立?如果存在,請求出符合條件的一個x0;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數為自然對數的底數).
(1)求函數上的單調區間;
(2)設函數,是否存在區間,使得當時函數的值域為,若存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題13分) 已知函數為自然對數的底數)。
(1)若,求函數的單調區間;
(2)是否存在實數,使函數上是單調增函數?若存在,求出的值;若不存在,請說明理由。恒成立,則,又,

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數,且,則當時, 的取值范圍是  (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视