【題目】已知實數x,y滿足x2+y2﹣4x+6y+4=0,則 的最小值是( )
A.2 +3
B. ﹣3
C. +3
D. ﹣3
【答案】B
【解析】解:x2+y2﹣4x+6y+4=0 即 (x﹣2)2+(y+3)2=9,表示以C(2,﹣3)為圓心、半徑等于3的圓.而 表示圓上的點A(x,y)到原點O(0,0)的距離,
由于CO= =
,故
的最小值是CO﹣r=
﹣3,
故選:B.
【考點精析】通過靈活運用圓的一般方程,掌握圓的一般方程的特點:(1)①x2和y2的系數相同,不等于0.②沒有xy這樣的二次項;(2)圓的一般方程中有三個特定的系數D、E、F,因之只要求出這三個系數,圓的方程就確定了;(3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐 的底面為正方形,
⊥底面
,則下列結論中不正確的是( )
A.
B. ∥平面
C. 與
所成的角等于
與
所成的角
D. 與平面
所成的角等于
與平面
所成的角
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 為偶函數,且函數的y=f(x)圖象相鄰的兩條對稱軸間的距離為
.
(1)求 的值;
(2)將y=f(x)的圖象向右平移 個單位后,再將所得的圖象上個點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數y=g(x)的圖象,求y=g(x)的單調區間,并求其在
上的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O:x2+y2=r2(r>0),點P為圓O上任意一點(不在坐標軸上),過點P作傾斜角互補的兩條直線分別交圓O于另一點A,B.
(1)當直線PA的斜率為2時,
①若點A的坐標為(﹣ ,﹣
),求點P的坐標;
②若點P的橫坐標為2,且PA=2PB,求r的值;
(2)當點P在圓O上移動時,求證:直線OP與AB的斜率之積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠修建一個長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設計水池能使總造價最低?最低造價是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:方程 表示焦點在x軸上的橢圓,命題q:方程(k﹣1)x2+(k﹣3)y2=1表示雙曲線.若p∨q為真,p∧q為假,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線E:x2=2py(p>0),直線y=kx+2與E交于A、B兩點,且 =2,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為(0,﹣2),記直線CA、CB的斜率分別為k1 , k2 , 證明:k12+k22﹣2k2為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=( +
)x3(a>0,a≠1).
(1)討論函數f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com