【題目】已知橢圓:
的一個焦點與拋物線
的焦點重合,點
在
上
(Ⅰ)求 的方程;
(Ⅱ)直線不過原點O且不平行于坐標軸,
與
有兩個交點
,線段
的中點為
,證明:
的斜率與直線
的斜率的乘積為定值.
【答案】(Ⅰ)(Ⅱ)詳見解析
【解析】
試題分析:(Ⅰ)求得拋物線的焦點,可得c=2,再由點滿足橢圓方程,結合a,b,c的關系,解方程可得橢圓的方程;(Ⅱ)設直線l的方程為y=kx+b(k,b≠0),A,B
,代入橢圓方程,運用韋達定理和中點坐標公式可得M的坐標,可得直線OM的斜率,進而得到證明
試題解析:(Ⅰ)拋物線的焦點為(2,0),由題意可得c=2,即
,
又點在
上,可得
解得
即有橢圓C:…………………………5分
(Ⅱ)證明:設直線的方程為
(
≠0),
,
,…………6分
將直線代入橢圓方程
,可得
,
…………………………8分
即有AB的中點M的橫坐標為,縱坐標為
…………10分
直線OM的斜率為即有
故OM的斜率與直線l的斜率的乘積為定值.…………………………12分
科目:高中數學 來源: 題型:
【題目】若函數f(x)和g(x)滿足:①在區間[a,b]上均有定義;②函數y=f(x)-g(x)在區間[a,b]上至少有一個零點,則稱f(x)和g(x)在[a,b]上具有關系G.
(1)若f(x)=lgx,g(x)=3-x,試判斷f(x)和g(x)在[1,4]上是否具有關系G,并說明理由;
(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有關系G,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若關于的方程
在區間
上有兩個不同的解
.
(ⅰ)求的取值范圍;
(ⅱ)若,求
的取值范圍;
(2)設函數在區間
上的最大值和最小值分別為
,求
的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點E為正方形ABCD邊CD上異于點C,D的動點,將△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,則下列三個說法中正確的個數是( )
①存在點E使得直線SA⊥平面SBC
②平面SBC內存在直線與SA平行
③平面ABCE內存在直線與平面SAE平行
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線的頂點為坐標原點O,焦點F在
軸正半軸上,準線
與圓
相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線
交于點
,命題
:“若直線
過定點(0,1),則
”,
請判斷命題的真假,并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某地參加2015 年夏令營的名學生的身體健康情況,將學生編號為
,采用系統抽樣的方法抽取一個容量為
的樣本,且抽到的最小號碼為
,已知這
名學生分住在三個營區,從
到
在第一營區,從
到
在第二營區,從
到
在第三營區,則第一、第二、第三營區被抽中的人數分別為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在坐標原點的橢圓
經過點
,且點
為其右焦點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在平行于的直線
,使得直線
與橢圓
有公共點,且直線
與
的距離等于4?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com