(本題滿分15分)已知橢圓上的動點到焦點距離的最小值為
。以原點為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(2,0)的直線與橢圓
相交于
兩點,
為橢圓上一點,
且滿足
(
為坐標原點)。當
時,求實數
的值.
(Ⅰ)故橢圓的方程為
.(Ⅱ)
。
【解析】本題綜合考查橢圓的性質及應用和直線與橢圓的位置關系,具有較大的難度,解題時要注意的靈活運用.
(1)由題設條件可知 a-c的值,然后利用以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切,得到橢圓C的標準方程.
(2)設出直線方程與橢圓聯立方程組,結合韋達定理和向量的關系式,得到參數k與t的關系式,進而得到結論。
解:(Ⅰ)由題意知; ………………2分
又因為,所以
,
.
………………4分
故橢圓的方程為
.
………………5分
(Ⅱ)設直線的方程為
,
,
,
,
由得
. ……………………7分
,
.
……………………9分
,
.又由
,得,
……………………11分
可得.
……………………12分
又由,得
,則
,
.
……………………13分
故,即
. ……………………14分
得,,即
……………………15分
科目:高中數學 來源:2013屆浙江省余姚中學高三上學期期中考試文科數學試卷(帶解析) 題型:解答題
(本題滿分15分)已知點(0,1),
,直線
、
都是圓
的切線(
點不在
軸上).
(Ⅰ)求過點且焦點在
軸上的拋物線的標準方程;
(Ⅱ)過點(1,0)作直線與(Ⅰ)中的拋物線相交于
兩點,問是否存在定點
使
為常數?若存在,求出點
的坐標及常數;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省桐鄉市高三10月月考理科數學 題型:解答題
(本題滿分15分)已知函數.
(Ⅰ)若為定義域上的單調函數,求實數m的取值范圍;
(Ⅱ)當時,求函數
的最大值;
(Ⅲ)當,且
時,證明:
.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省桐鄉市高三下學期2月模擬考試文科數學 題型:解答題
(本題滿分15分)已知圓N:和拋物線C:
,圓的切線
與拋物線C交于不同的兩點A,B,
(1)當直線的斜率為1時,求線段AB的長;
(2)設點M和點N關于直線對稱,問是否存在直線
使得
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:杭州市2010年第二次高考科目教學質量檢測 題型:解答題
(本題滿分15分)已知直線,曲線
(1)若且直線與曲線恰有三個公共點時,求實數
的取值;
(2)若,直線與曲線M的交點依次為A,B,C,D四點,求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com