【題目】第二屆中國國際進口博覽會于2019年11月5日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿易自由化和經濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經貿交流合作,促進全球貿易和世界經濟增長,推動開放世界經濟發展.某機構為了解人們對“進博會”的關注度是否與性別有關,隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調查,并得到如下列聯表:
男性 | 女性 | 合計 | |
關注度極高 | 35 | 14 | 49 |
關注度一般 | 15 | 36 | 51 |
合計 | 50 | 50 | 100 |
(1)根據列聯表,能否有99.9%的把握認為對“進博會”的關注度與性別有關;
(2)若從關注度極高的被調查者中按男女分層抽樣的方法抽取7人了解他們從事的職業情況,再從7人中任意選取2人談談關注“進博會”的原因,求這2人中至少有一名女性的概率.
附:.
參考數據:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1)有, (2)
【解析】
(1)根據列聯表求出,比較數據,即可得結論;
(2)按比例分配抽取男性5人,女性2人,對抽取的7人,分別進行編號,列出從7人任意選取2人的所有情況,找出滿足條件的基本事件的個數,由古典概型概率公式,即可求解.
18.解:(1),
所以有99.9%的把握認為對“進博會”的關注度與性別有關.
(2)關注度極高的被調查者中男性與女性的比例為,
所以抽取的7人中有男性5人,女性2人.
記男性5人分別為a,b,e,d,e;女性2人分別為A,B,
從7人中任意選取2人的所有情況有:ab,ac,ad,ae,aA,aB,
bc,bd,be,bA,bB,cd,ce,cA,cB,de,dA,dB,eA,eB,AB,
共21種,其中這2人至少有一名女性的情況有11種,所以,
所以這2人中至少有一名女性的概率為.
科目:高中數學 來源: 題型:
【題目】在三棱錐中,OA、OB、OC所在直線兩兩垂直,且
,CA與平面AOB所成角為
,D是AB中點,三棱錐
的體積是
.
(1)求三棱錐的高;
(2)在線段CA上取一點E,當E在什么位置時,異面直線BE與OD所成的角為?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系上,有一點列,設點
的坐標
(
),其中
. 記
,
,且滿足
(
).
(1)已知點,點
滿足
,求
的坐標;
(2)已知點,
(
),且
(
)是遞增數列,點
在直線
:
上,求
;
(3)若點的坐標為
,
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,點A為該橢圓的左頂點,過右焦點
的直線l與橢圓交于B,C兩點,當
軸時,三角形ABC的面積為18.
求橢圓
的方程;
如圖,當動直線BC斜率存在且不為0時,直線
分別交直線AB,AC于點M、N,問x軸上是否存在點P,使得
,若存在求出點P的坐標;若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如下圖中、
、
、
、
、
六個區域進行染色,每個區域只染一種顏色,每個區域只染一種顏色,且相鄰的區域不同色.若有
種顏色可供選擇,則共有_________種不同的染色方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數
.
(1)求實數的值,使得
為奇函數;
(2)若關于的方程
有兩個不同實數解,求
的取值范圍;
(3)若關于的不等式
對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程
(
為參數).直線
的參數方程
(
為參數).
(Ⅰ)求曲線在直角坐標系中的普通方程;
(Ⅱ)以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,當曲線
截直線
所得線段的中點極坐標為
時,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程;
(2)射線與曲線
分別交于
兩點(異于原點
),定點
,求
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com