【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求和
的直角坐標方程;
(2)已知直線與
軸交于點
,且與曲線
交于
,
兩點(
在第一象限),則
的值.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,四邊形
為矩形,
是
的中點,
是
的中點,點
在線段
上且
.
(1)證明平面
;
(2)當為多大時,在線段
上存在點
使得
平面
且
與平面
所成角為
同時成立?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鮮花店每天制作、
兩種鮮花共
束,每束鮮花的成本為
元,售價
元,如果當天賣不完,剩下的鮮花作廢品處理.該鮮花店發現這兩種鮮花每天都有剩余,為此整理了過往100天這兩種鮮花的日銷量(單位:束),得到如下統計數據:
| 48 | 49 | 50 | 51 |
天數 | 25 | 35 | 20 | 20 |
| 48 | 49 | 50 | 51 |
天數 | 40 | 35 | 15 | 10 |
以這100天記錄的各銷量的頻率作為各銷量的概率,假設這兩種鮮花的日銷量相互獨立.
(1)記該店這兩種鮮花每日的總銷量為束,求
的分布列.
(2)鮮花店為了減少浪費,提升利潤,決定調查每天制作鮮花的量束.以銷售這兩種鮮花的日總利潤的期望值為決策依據,在每天所制鮮花能全部賣完與
之中選其一,應選哪個?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大以來,某貧困地區扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區人民群眾脫貧奔小康.經過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加.為了制定提升農民年收入、實現2020年脫貧的工作計劃,該地扶貧辦統計了2019年50位農民的年收入并制成如下頻率分布直方圖:
(1)根據頻率分布直方圖,估計50位農民的年平均收入元(單位:千元)(同一組數據用該組數據區間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區農民年收入X服從正態分布,其中
近似為年平均收入
,
近似為樣本方差
,經計算得
,利用該正態分布,求:
(i)在扶貧攻堅工作中,若使該地區約有占總農民人數的84.14%的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了1000位農民.若每位農民的年收入互相獨立,問:這1000位農民中的年收入不少于12.14千元的人數最有可能是多少?
附參考數據:,若隨機變量X服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為4,且過點
.
(1)求橢圓的標準方程;
(2)設為橢圓
上一點,過點
作
軸的垂線,垂足為
,取點
,連接
,過點
作
的垂線交
軸于點
,點
是點
關于
軸的對稱點,作直線
,問這樣作出的直線
是否與橢圓
一定有唯一的公共點?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex-ax-1(e為自然對數的底數),a>0.
(1)若函數f(x)恰有一個零點,證明:aa=ea-1;
(2)若f(x)≥0對任意x∈R恒成立,求實數a的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,AE⊥平面ABCD,PD∥AE,PD=AD=2EA=2,G,F,H分別為BE,BP,PC的中點.
(1)求證:平面ABE⊥平面GHF;
(2)求直線GH與平面PBC所成的角θ的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)若曲線上一點
的極坐標為
,且
過點
,求
的普通方程和
的直角坐標方程;
(2)設點,
與
的交點為
,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com