精英家教網 > 高中數學 > 題目詳情
等差數列{an}前n項和為Sn,已知a1=13,S3=S11,n為______時,Sn最大.
設等差數列{an}的公差為d,∵a1=13,S3=S11,∴3×13+
3×2
2
d
=11×13+
11×10
2
d
,解得d=-2.
∴an=13+(n-1)×(-2)=15-2n.
令an≥0,解得n≤7.5,
因此當n=7時,S7最大.
故答案為7.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

計算

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列前n項和為Sn=n2+3n
(1)寫出數列的前5項;
(2)求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列共有2n+1項,所有奇數項的和為132,所有偶數項的和為120,則n=( 。
A.9B.10C.11D.不確定

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在等差數列{an}中,a1=12,且3a8=5a13,則Sn中最大的是(  )
A.S20B.S21C.S10D.S11

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列{an}是等比數列,首項a1=2,a4=16
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{bn}是等差數列,且b3=a3,b5=a5,求數列{bn}的通項公式及前n項的和.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在等差數列{an}中,a1=1,a2-a5=3,若其前n項和為Sn,則S100=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列{an}是遞減數列,且a2•a3•a4=48,a2+a3+a4=12,則數列{an}的通項公式是( 。
A.an=-2n+10B.an=2n-12C.an=2n+4D.an=-2n+12

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若{an}是等比數列,前n項和Sn=2n-1,則
a21
+
a22
+
a23
+…+
a2n
=( 。
A.(2n-1)2B.
1
3
(2n-1)2
C.4n-1D.
1
3
(4n-1)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视