精英家教網 > 高中數學 > 題目詳情
已知數列的前項和是,滿足.
(Ⅰ)求數列的通項及前項和;
(Ⅱ)若數列滿足,求數列的前項和;
(Ⅲ)若對任意的,恒有成立,求實數的取值范圍
(1).   (2)
(3)
(I)先求出a1,然后構造由,再與作差可得,進而確定是等比數列.問題得解.
(II)在(I)問的基礎上,采用裂項求和方法求和.
(III) 由恒成立 , 即恒成立
恒成立 ,必須且只須滿足恒成立,然后轉化為關于對于一切實數x恒成立即可.
解:(I)由,…………1分
---------2分
∴數列是等比數列  數列的公比q="2"
所以,數列的通項公式為  …………3分
項和公式為. ………………………4分
(II)
 ……………………………6分
  ………………………7分
         …………………………………………8分
(Ⅲ)由恒成立    即恒成立
恒成立 ……………………………………9分
必須且只須滿足恒成立 ………………………………10分
在R上恒成立   ,………………11分
解得.  
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

若數列滿足,則稱數列為“等方比數列”甲:數列為“等比數列”;乙:數列為“等方比數列”;則
A.甲是乙的充分不必要條件,
B.甲是乙的必要不充分條件,
C.甲是乙的充要條件,
D.甲既不是乙的充分條件也不是乙的必要條件,

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列的首項,前項和.(Ⅰ)求數列的通項公式;(Ⅱ)設,,為數列的前項和,求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

 數列中,,是常數,),且成公比不為的等比數列。
(I)求的值;
(II)求的通項公式。
(III)由數列中的第1、3、9、27、……項構成一個新的數列{b},求的值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*).
(Ⅰ)證明:數列為等差數列;
(Ⅱ)求數列{ an-1}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知等差數列,若,且它的前項和有最大值,那么當取得最小正值時,=( )
A.14B.15C.27D.28

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列的前n項和為=(    )
A.18B.20C.21D.22

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

差數列中,已知前15項的和,則等于(   )
A.B.12C.D.6

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在等差數列中,公差成等比數列,則 =    ;

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视