精英家教網 > 高中數學 > 題目詳情

【題目】近年來,隨著互聯網技術的快速發展,共享經濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農家樂”等形式開始在很多平臺上線.某創業者計劃在某景區附近租賃一套農房發展成特色“農家樂”,為了確定未來發展方向,此創業者對該景區附近六家“農家樂”跟蹤調查了天.得到的統計數據如下表,為收費標準(單位:元/日),為入住天數(單位:),以頻率作為各自的“入住率”,收費標準與“入住率”的散點圖如圖

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若從以上六家“農家樂”中隨機抽取兩家深入調查,記為“入住率”超過的農家樂的個數,求的概率分布列;

(2)令,由散點圖判斷哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據你的判斷結果求回歸方程.(結果保留一位小數)

(3)若一年按天計算,試估計收費標準為多少時,年銷售額最大?(年銷售額入住率收費標準

參考數據:

【答案】(1)見解析;(2)見解析,(3)收費標準約為/日時,最大值約為

【解析】

1)由題意可知的所有可能取值為.分別計算相應的概率值確定分布列即可;

2)由散點圖可知更適合于此模型.分別確定,的值即可確定回歸方程;

3)由題意可得 利益導函數研究年銷售額的最大值即可.

1的所有可能取值為.

,

的分布列

2)由散點圖可知更適合于此模型.

其中,

所求的回歸方程為

3

若一年按天計算,當收費標準約為/日時,年銷售額最大,最大值約為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

1時,求曲線處的切線方程;

2R上的單調遞增函數,求a的取值范圍;

3若函數對任意的實數,存在唯一的實數,使得成立,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:函數fx=lgax2-x+16a)的定義域為R;命題q:不等式3x-9xa對任意xR恒成立.

(1)如果p是真命題,求實數a的取值范圍;

(2)如果命題pq為真命題且pq為假命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一次考試中,5名同學的數學、物理成績如表所示:

學生

數學

89

91

93

95

97

物理

87

89

89

92

93

請在圖中的直角坐標系中作出這些數據的散點圖,并求出這些數據的回歸方程;

要從4名數學成績在90分以上的同學中選2名參加一項活動,以X表示選中的同學的物理成績高于90分的人數,求隨機變量X的分布列及數學期望

參考公式:線性回歸方程;,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數列直線lx軸正半軸和y軸分別交于點Q、P,與橢圓分別交于點M、N,各點均不重合且滿足

求橢圓的標準方程;

,試證明:直線l過定點并求此定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,,為全等的正三角形,且平面平面,平面平面,

(1)證明:;

(2)求點到平面的距離

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在矩形中,,點的中點,將沿折起到的位置,使二面角是直二面角.

1證明: ;

2求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過拋物線焦點的直線與拋物線交于兩點,與圓交于、兩點,若有三條直線滿足,則的取值范圍為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點的距離和它到直線的距離的比是常數

求點M的軌跡C的方程;

N是圓E上位于第四象限的一點,過N作圓E的切線,與曲線C交于A,B兩點求證:的周長為10

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视