(本小題共12分)
如圖,已知直線l與拋物線相切于點P(2,1),且與x軸交于點A,O為坐標原點,
定點B的坐標為(2,0).
(1)若動點M滿足,求點M的軌跡C;
(2)若過點B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
(I)動點M的軌跡C為以原點為中心,焦點在x軸上,長軸長為,短軸長為2的橢圓 (II)(3-2
,1).
解析試題分析:(I)由,
∴直線l的斜率為
故l的方程為,∴點A坐標為(1,0)
設 則
,
由得
整理,得
∴動點M的軌跡C為以原點為中心,焦點在x軸上,長軸長為,短軸長為2的橢圓
(II)由題意知直線l的斜率存在且不為零,設l方程為y=k(x-2)(k≠0)①
將①代入,整理,得
,
由△>0得0<k2<. 設E(x1,y1),F(x2,y2)
則 ②
令,由此可得
由②知.
∴△OBE與△OBF面積之比的取值范圍是(3-2,1).
考點:本題考查了直線與拋物線的位置關系
點評:對于直線與圓錐曲線的綜合問題,往往要聯立方程,同時結合一元二次方程根與系數的關系進行求解;而對于最值問題,則可將該表達式用直線斜率k表示,然后根據題意將其進行化簡結合表達式的形式選取最值的計算方式.
科目:高中數學 來源: 題型:解答題
已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為
,右頂點為
,設點
.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段
中點
的軌跡方程;
(3)過原點的直線交橢圓于點
,求
面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在坐標原點,兩個焦點分別為
,
,點
在橢圓
上,過點
的直線
與拋物線
交于
兩點,拋物線
在點
處的切線分別為
,且
與
交于點
.
(1) 求橢圓的方程;
(2) 是否存在滿足的點
? 若存在,指出這樣的點
有幾個(不必求出點
的坐標); 若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓(a>b>0)的離心率e=
,連接橢圓的四個頂點得到的菱形的面積為4.(Ⅰ)求橢圓的方程;(Ⅱ)設直線l與橢圓相交于不同的兩點A、B,已知點A的坐標為(-
,0).若
,求直線l的傾斜角;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓E:的焦點坐標為
(
),點M(
,
)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設Q(1,0),過Q點引直線與橢圓E交于
兩點,求線段
中點
的軌跡方程;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com