精英家教網 > 高中數學 > 題目詳情
已知橢圓()中,成等比數列,則橢圓的離心率為(    )
A.B.C.D.
D

試題分析:由已知可得
點評:求橢圓離心率關鍵是找到關于的齊次方程或不等式
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(滿分12分)已知點,直線 交軸于點,點上的動點,過點垂直于的直線與線段的垂直平分線交于點
(Ⅰ)求點的軌跡的方程;(Ⅱ)若 A、B為軌跡上的兩個動點,且 證明直線AB必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的一個焦點是F(1,0),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設經過點F的直線交橢圓CMN兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在拋物線上取橫坐標為,的兩點,經過兩點引一條割線,有平行于該割線的一條直線同時與該拋物線和圓相切,則拋物線的頂點坐標是
A.(-2,-9)B.(0,-5)C.(2,-9)D.(1,-6)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在雙曲線中,F1、F2分別為其左右焦點,點P在雙曲線上運動,求△PF1F2的重心G的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題12分)直線l:y=kx+1與雙曲線C:的右支交于不同的兩點A,B
(Ⅰ)求實數k的取值范圍;
(Ⅱ)是否存在實數k,使得以線段AB為直徑的圓經過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線的焦距為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在平面直角坐標系中,對于任意兩點的“非常距離”
給出如下定義:若,則點與點的“非常距離”為,
,則點與點的“非常距離”為
已知是直線上的一個動點,點的坐標是(0,1),則點與點的“非常距離”的最小值是_________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视