精英家教網 > 高中數學 > 題目詳情

RtABC中,∠ACB=30°,∠B=90°,DAC中點,EBD的中點,AE的延長線交BCF,將△ABD沿BD折起,二面角A-BD-C大小記為θ.

(Ⅰ)求證:面AEF⊥面BCD; 

(Ⅱ)θ為何值時,ABCD

見解析


解析:

(Ⅰ)證明:在Rt△ABC中,∠C=30°,D為AC的中點,則△ABD是等邊三角形

EBD的中點,∵BD⊥AE,BD⊥EF,折起后,AEEF=E,∴BD⊥面AEF

BDBCD,∴面AEF⊥面BCD      

(Ⅱ)解:過A作AP⊥面BCD于P,則PFE的延長線上,設BPCD相交于Q,

AB=1,則△ABD是邊長為1的等邊三角形,若ABCD,則BQ⊥CD

由于∠AEF=θ就是二面角A-BD-C的平面角,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在直角坐標系xOy中,
i
,
j
分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,
AB
=
i
+
j
AC
=2
i
+m
j
,則實數m=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在Rt△ABC中,∠C=90°,AC=3,則
AB
AC
=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•昌平區一模)在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點,那么(
AB
-
AC
)•
AD
=
2
2
;若E是AB的中點,P是△ABC(包括邊界)內任一點.則
AD
EP
的取值范圍是
[-9,9]
[-9,9]

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC=
3:2
3:2

查看答案和解析>>

科目:高中數學 來源: 題型:

(幾何證明選講選做題)
如圖,在Rt△ABC中,∠C=90°,E為AB上一點,以BE為直徑作圓O剛好與AC相切于點D,若AB:BC=2:1,  CD=
3
,則圓O的半徑長為
2
2

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视