【題目】設函數.
(1)若函數在
上為減函數,求實數
的最小值;
(2)若存在,使
成立,求實數
的取值范圍.
【答案】(Ⅰ)最小值為;(II)
【解析】試題分析: 在
上為減函數,等價于
在
上恒成立,進而轉化為
,根據二次函數的性質可得
命題“若存在
,
,使
成立”等價于
“當時,有
”, 由
易求
,從而問題等價于“當
時,有
”,分
,
兩種情況討論:
當是易求
,當
時可求得
的值域為
,再按
兩種情況討論即可
解析:(1)由已知得,
因在
上為減函數,故
在
上恒成立。
所以當時
。
又,
故當時,即
時,
.
所以,于是
,故
的最小值為
.
(2)命題“若存在,
,使
成立”等價于
“當時,”
”,
由(1),當時,
,
.
問題等價于:“當時,有
”.
當,由(1),
在
為減函數,
則,故
.
當時,由于
在
上的值域為
(i),即
,
在
恒成立,故
在
上為增函數,
于是, ,矛盾。
(ii),即
,由
的單調性和值域知,
存在唯一,使
,且滿足:
當時,
,
為減函數;當
時,
,
為增函數;
所以, ,
所以, ,與
矛盾。
綜上得
科目:高中數學 來源: 題型:
【題目】設函數 (
且
)是定義域為R的奇函數.
(Ⅰ)求t的值;
(Ⅱ)若函數的圖象過點
,是否存在正數m
,使函數
在
上的最大值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確命題的個數是( )
(1)cosα≠0是 的充分必要條件
(2)f(x)=|sinx|+|cosx|,則f(x)最小正周期是π
(3)若將一組樣本數據中的每個數據都加上同一個常數后,則樣本的方差不變
(4)設隨機變量ζ服從正態分布N(0,1),若P(ζ>1)=p,則 .
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)= ,直線y=m與函數f(x)的圖象相交于四個不同的點,從小到大,交點橫坐標依次記為a,b,c,d,有以下四個結論 ①m∈[3,4)
②abcd∈[0,e4)
③a+b+c+d∈
④若關于x的方程f(x)+x=m恰有三個不同實根,則m取值唯一.
則其中正確的結論是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若一條直線與一個平面垂直,則稱此直線與平面構成一個“正交線面對”.那么在一個正方體中,由兩個頂點確定的直線與含有四個頂點的平面構成的“正交線面對”的個數是( )
A. 48 B. 36 C. 24 D. 18
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com