精英家教網 > 高中數學 > 題目詳情
已知橢圓C的焦點F1(-,0)和F2,0),長軸長6。
(1)求橢圓C的標準方程。
(2)設直線交橢圓C于A、B兩點,求線段AB的中點坐標。
(1)(2)。

試題分析:(1)由F1(-,0)和F2,0),長軸長為6得:c=2,a=3,所以b=1。所以橢圓方程為
(2)設A()B(),由(1)可知橢圓方程為 ,與直線AB的方程y=x+2聯立化簡并整理得10x2+36x+27=0,∴x1+x2=,,。所以AB的中點的坐標為。
點評:此題的第二問也可以用點差法,一般情況下,遇到弦中點的問題可以先考慮點差法。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(滿分10分)(Ⅰ) 設橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設直線的斜率分別為,利用(Ⅰ)的結論直接寫出的值。(不必寫出推理過程)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的左、右焦點分別為,若橢圓上恰好有6個不同的點,使得為等腰三角形,則橢圓的離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點分別是橢圓)的左頂點和上頂點,橢圓的左右焦點分別是,點是線段上的動點,如果的最大值是,最小值是,那么,橢圓的的標準方程是                   .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓,直線:y=x+m
(1)若與橢圓有一個公共點,求的值;
(2)若與橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

一個頂點是,且離心率為的橢圓的標準方程是________________。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點在橢圓上,則的最大值為(    )
A.B.-1C.2D.7

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題12分)橢圓:的兩個焦點為,點在橢圓上,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過圓的圓心,交橢圓兩點,且關于點對稱,求直線的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓=1的離心率為(  )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视