【題目】某學校課題組為了研究學生的數學成績與學生細心程度的關系,在本校隨機調查了100名學生進行研究.研究結果表明:在數學成績及格的60名學生中有45人比較細心,另15人比較粗心;在數學成績不及格的40名學生中有10人比較細心,另30人比較粗心.
(1)試根據上述數據完成2×2列聯表;
數學成績及格 | 數學成績不及格 | 合計 | |
比較細心 | |||
比較粗心 | |||
合計 |
(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數學成績與細心程度有關系. 參考數據:獨立檢驗隨機變量K2的臨界值參考表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
科目:高中數學 來源: 題型:
【題目】已知數據x1,x2,x3,…,xn是普通職工n(n≥3,n∈N*)個人的年收入,設這n個數據的中位數為x,平均數為y,方差為z,如果再加上世界首富的年收入xn+1,則這n+1個數據中,下列說法正確的是
A. 年收入平均數大大增大,中位數一定變大,方差可能不變
B. 年收入平均數大大增大,中位數可能不變,方差變大
C. 年收入平均數大大增大,中位數可能不變,方差也不變
D. 年收入平均數可能不變,中位數可能不變,方差可能不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學從某次考試成績中抽取若干名學生的分數,并繪制成如圖所示的頻率分布直方圖,樣本數據分組為[50,60),[60,70),[70,80),[80,90),[90,100].若用分層抽樣的方法從樣本中抽取分數在[80,100]范圍內的數據16個,則其中分數在[90,100]范圍內的樣本數據有 ( )
A. 5個 B. 6個
C. 8個 D. 10個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A、B、C的對邊分別為a、b、c,且a>c,已知=2,cosB=
,b=3,求:
(1)a和c的值;
(2)cos(B-C)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若函數在區間
上存在零點,求實數
的取值范圍;
(2)當時,若對任意的
,總存在
,使
成立,求實數
的取值范圍;
(3)若的值域為區間
,是否存在常數
,使區間
的長度為
?若存在,求出
的值;若不存在,請說明理由.(注:區間
的長度為
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運輸貨物到乙地,運輸成本包括燃料費用和其他費用.已知該貨輪每小時的燃料費與其速度的平方成正比,比例系數為
,其他費用為每小時
元,且該貨輪的最大航行速度為
海里/小時.
()請將該貨輪從甲地到乙地的運輸成本
表示為航行速度
(海里/小時)的函數.
()要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx,且0<x1<x2 , 給出下列命題: ① <1
②x2f(x1)<x1f(x2)
③當lnx>﹣1時,x1f(x1)+x2f(x2)>2x2f(x1)
④x1+f(x1)<x2+f(x2)
其中正確的命題序號是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com