精英家教網 > 高中數學 > 題目詳情
(2013•長春一模)請考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.
如圖,已知⊙O和⊙M相交于A、B兩點,AD為⊙M的直徑,直線BD交⊙O于點C,點G為
BD
中點,連接AG分別交⊙O、BD于點E、F,連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:
GF
AG
=
EF2
CE2
分析:(1)連接AB,由圓周角定理,及G為
BD
中點,可得∠GAD=∠FCE,∠CEF=∠ABC=90°,進而得到△CEF∽△AGD,根據相似三角形對應邊成比例,可得AG•EF=CE•GD;
(2)由(1)可得∠DFG=∠CFE=∠ADG,故△AGD∽△DGF,根據相似三角形對應邊成比例,可得
GF
DG
=
DG
AG
=
EF
CE
,進而
GF
AG
=
EF2
CE2
解答:證明(1):已知AD為⊙M的直徑,連接AB,
則∠BCE=∠BAE,∠CEF=∠ABC=90°,
由點G為弧BD的中點可知∠GAD=∠BAE=∠FCE,
故△CEF∽△AGD,所以有
CE
AG
=
EF
GD
,
即AG•EF=CE•GD.(5分)
(2)由(1)知∠DFG=∠CFE=∠ADG,
故△AGD∽△DGF,
所以
GF
DG
=
DG
AG
=
EF
CE
,
GF
AG
=
EF2
CE2
.(10分)
點評:本小題主要考查平面幾何中三角形相似的判定與性質,以及圓中角的性質等知識.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•長春一模)已知:x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,則實數m的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長春一模)已知函數f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點P(2,f(2))處的切線垂直于y軸,求實數a的值;
(2)當a>0時,求函數f(|sinx|)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長春一模)橢圓
 x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,右焦點到直線x+y+
6
=0
的距離為2
3
,過M(0,-1)的直線l交橢圓于A,B兩點.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線l交x軸于N,
NA
=-
7
5
NB
,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長春一模)定義在R上的函數f(x)滿足f(x)+f(x+5)=16,當x∈(-1,4]時,f(x)=x2-2x,則函數f(x)在[0,2013]上的零點個數是
604
604

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長春一模)在正項等比數列{an}中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,則n=( 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视