精英家教網 > 高中數學 > 題目詳情
已知數列{
anpn-1
}
的前n項和Sn=n2+2n(其中常數p>0),數列{an}的前n項和為Tn
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)求Tn的表達式;
(Ⅲ)若對任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立,求p的取值范圍.
分析:(Ⅰ)由Sn-Sn-1可得數列{
an
pn-1
}
的通項公式,從而得an
(Ⅱ)由通項an寫出前n項和Tn的表達式并計算結果;
(III)討論p=1時,p≠1時,不等式是否成立.
解答:解:(Ⅰ)當n=1時,a1=S1=3;
當n≥2時,
an
pn-1
=Sn-Sn-1=2n+1,得an=(2n+1)pn-1;
又因為n=1也滿足上式,所以an=(2n+1)pn-1
(Ⅱ)∵Tn=3+5p+7p2+…+(2n+1)pn-1,
①當p=1時,Tn=3+5+7+…+(2n+1)=n2+2n;
②當p≠1時,由Tn=3+5p+7p2+…+(2n+1)pn-1
pTn=3p+5p2+7p3+…+(2n-1)pn-1+(2n+1)pn,
∴(1-p)Tn=3+2(p+p2+p3+…+pn-1)-(2n+1)pn,
∴Tn=
3
1-p
+
2p(1-pn-1)
(1-p)2
-
1
1-p
(2n+1)pn
綜上,當p=1時,Tn=n2+2n;
當p≠1時,Tn=
3
1-p
+
2p(1-pn-1)
(1-p)2
-
1
1-p
(2n+1)pn
( III)①當p=1時,顯然對任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立;
②當p≠1時,可轉化為對任意n∈N*,都有3+
2p(1-pn-1)
1-p
≥2pn恒成立.
即對任意n∈N*,都有
3-p
1-p
4-2p
1-p
pn恒成立.
當0<p<1時,只要
3-p
4-2p
≥p成立,解得:0<p<1;
當1<p<2時,只要
3-p
4-2p
≤pn 對任意n∈N*恒成立,
只要有
3-p
4-2p
≤pn對任意n∈N*恒成立,
只要有
3-p
4-2p
≤p成立,解得:1<p≤
3
2
;
當p≥2時,不等式不成立.
綜上,實數p的取值范圍為(0,
3
2
].
點評:本題考查了等差、等比數列的綜合應用以及數列與不等式的綜合應用問題,其中(Ⅰ)是基礎題,(Ⅱ)是中檔題,(Ⅲ)是難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}滿足條件(n-1)an+1=(n+1)(an-1),a2=6,令bn=an+n(n∈N*
(Ⅰ)寫出數列{bn}的前四項;
(Ⅱ)求數列{bn}的通項公式,并給出證明;
(Ⅲ)是否存在非零常數p,q,使得數列{
anpn+q
}
成等差數列?若存在,求出p,q滿足的關系式;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列{an}滿足條件(n-1)an+1=(n+1)(an-1),a2=6,令bn=an+n(n∈N*
(Ⅰ)寫出數列{bn}的前四項;
(Ⅱ)求數列{bn}的通項公式,并給出證明;
(Ⅲ)是否存在非零常數p,q,使得數列{
an
pn+q
}
成等差數列?若存在,求出p,q滿足的關系式;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视