精英家教網 > 高中數學 > 題目詳情
對于定義域為D的函數f(x),若同時滿足下列條件:①f(x)在D內有單調性;②存在區間[a,b]⊆D,使f(x)在區間[a,b]上的值域也為[a,b],則稱f(x)為D上的“和諧”函數,[a,b]為函數f(x)的“和諧”區間.
(Ⅰ)求“和諧”函數y=x3符合條件的“和諧”區間;
(Ⅱ)判斷函數f(x)=x+
4
x
(x>0)
是否為“和諧”函數?并說明理由.
(Ⅲ)若函數g(x)=
x+4
+m
是“和諧”函數,求實數m的取值范圍.
分析:(Ⅰ)根據“和諧”函數的定義,建立條件關系,即可求y=x3符合條件的“和諧”區間;
(Ⅱ)判斷函數f(x)=x+
4
x
(x>0)
是否滿足“和諧”函數?的條件即可.
(Ⅲ)根據函數g(x)是“和諧”函數,建立條件關系,即可求實數m的取值范圍.
解答:解:(Ⅰ)因為y=x3是單調遞增函數,
所以有
a3=a
b3=b
a<b
a=-1
b=1
a=-1
b=0
a=0
b=1
,
即[a,b]=[-1,1]或[a,b]=[-1,0]或[a,b]=[0,1].
(Ⅱ)函數f(x)=x+
4
x
在(0,+∞)上不單調(說明),不是“和諧”函數.
(Ⅲ)若g(x)=
x+4
+m
是“和諧”函數.
設-4≤x1<x2,
g(x1)-g(x2)=
x1+4
-
x2+4
=
(x1+4)-(x2+4)
x1+4
+
x2+4
<0
,
所以g(x)=
x+4
+m
是單調遞增函數.
若它是“和諧”函數,則必具備方程x=
x+4
+m
有兩個不相同的實數解,
即方程x2-(2m+1)x+m2-4=0有兩個不同的實數解且同時大于或等于-4和m.若令h(x)=x2-(2m+1)x+m2-4,
△>0
2m+1
2
>-4
h(-4)≥0
x≥m
⇒m∈(-
17
4
,-4]

另解:方程x=
x+4
+m
有兩個不相同的實數解,
等價于兩函數y1=x-m與y2=
x+4
的圖象有兩個不同的交點,當直線過(-4,0)時,m=-4;
直線與拋物線相切時m=-
17
4
,∴m∈(-
17
4
,-4]

若它是“和諧”函數,則必具備方程x=
x+4
+m
有兩個不相同的實數解,
即方程x2-(2m+1)x+m2-4=0有兩個不同的實數解且同時大于或等于-4和m.
若令h(x)=x2-(2m+1)x+m2-4,
△>0
2m+1
2
>-4
h(-4)≥0
x≥m
⇒m∈(-
17
4
,-4]
點評:本題主要考查“和諧”函數的定義及應用,正確理解“和諧”函數的定義是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于定義域為D的函數y=f(x),如果存在區間[m,n]⊆D,同時滿足:
①f(x)在[m,n]內是單調函數;
②當定義域是[m,n]時,f(x)的值域也是[m,n].則稱[m,n]是該函數的“和諧區間”.
(1)求證:函數y=g(x)=3-
5
x
不存在“和諧區間”.
(2)已知:函數y=
(a2+a)x-1
a2x
(a∈R,a≠0)有“和諧區間”[m,n],當a變化時,求出n-m的最大值.
(3)易知,函數y=x是以任一區間[m,n]為它的“和諧區間”.試再舉一例有“和諧區間”的函數,并寫出它的一個“和諧區間”.(不需證明,但不能用本題已討論過的y=x及形如y=
bx+c
ax
的函數為例)

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義域為D的函數f(x),若存在區間M=[a,b]⊆D(a<b),使得{y|y=f(x),x∈M}=M,則稱區間M為函數f(x)的“等值區間”.給出下列三個函數:
f(x)=(
12
)x
;   ②f(x)=x3;    ③f(x)=log2x+1
則存在“等值區間”的函數的個數是
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義域為D的函數y=f(x),若同時滿足下列條件:①f(x)在D內單調遞增或單調遞減;②存在區間[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b];那么把y=f(x)(x∈D)叫閉函數.
(1)求閉函數y=-x3符合條件②的區間[a,b];
(2)判斷函數f(x)=
3
4
x+
1
x
(x>0)是否為閉函數?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣一模)定義:對于定義域為D的函數f(x),如果存在t∈D,使得f(t+1)=f(t)+f(1)成立,稱函數f(x)在D上是“T”函數.已知下列函數:
①f(x)=
1x
; 
②f(x)=log2(x2+2);
③f(x)=2x(x∈(0,+∞)); 
④f(x)=cosπx(x∈[0,1]),其中屬于“T”函數的序號是
.(寫出所有滿足要求的函數的序號)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视