【題目】已知f(x)= .
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對任意x>0,f(x)≤t恒成立,求實數t的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知中心在坐標原點O的橢圓C經過點A(2,3),且點F(2,0)為其右焦點。
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在平行于OA的直線,使得直線
與橢圓C有公共點,且直線OA與
的距離等于4?若存在,求出直線
的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC= a,E為BC的中點,F在棱AC上,且AF=3FC.
(1)求三棱錐D﹣ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN= CA,求證:MN∥平面DEF.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
,直線
與
圓相切,且直線
:
與橢圓
:
相交于兩點,
為原點。
(1)若直線過橢圓
的左焦點,且與圓
交于
兩點,且,求直線
的方程;
(2)如圖,若的重心恰好在圓上,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(13分)如圖,橢圓經過點
,離心率
,直線l的方程為
.
(1)求橢圓C的方程;
(2)是經過右焦點
的任一弦(不經過點
),設直線
與直線
相交于點
,記
、
、
的斜率分別為
、
、
.問:是否存在常數
,使得
? 若存在,求
的值; 若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線,直線
經過點
與
相交于
、
兩點.
(1)若且
,求證:
必為
的焦點;
(2)設,若點
在
上,且
的最大值為
,求
的值;
(3)設為坐標原點,若
,直線
的一個法向量為
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某經銷商從外地水產養殖廠購進一批小龍蝦,并隨機抽取40只進行統計,按重量分類統計結果如下圖:
(1)記事件為:“從這批小龍蝦中任取一只,重量不超過35
的小龍蝦”,求
的估計值;
(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數量;
(3)為適應市場需求,了解這批小龍蝦的口感,該經銷商將這40只小龍蝦分成三個等級,如下表:
等級 | 一等品 | 二等品 | 三等品 |
重量( |
按分層抽樣抽取10只,再隨機抽取3只品嘗,記為抽到二等品的數量,求抽到二級品的期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com