已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數a∈[1,2]恒成立;q:函數f(x)=3x2+2mx+m+有兩個不同的零點.求使“p且q”為假命題、“p或q”為真命題的實數m的取值范圍.
解析試題分析:解:由題設知x1+x2=a,x1x2=-2,
∴|x1-x2|==.
a∈[1,2]時,的最小值為3,要使|m-5|≤|x1-x2|對任意實數a∈[1,2]恒成立,只需|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式Δ=4m2-12(m+)=4m2-12m-16>0,得m<-1或m>4,
綜上,要使“p且q”為假命題、“p或q”為真命題,只需p真q假或p假q真,即 或
解得實數m的取值范圍是
.
考點:邏輯聯結詞
點評:邏輯聯結詞有三個:且、或和非。在且命題中,只有兩個命題都為真時,且命題才為真,而在或命題中,只要一個命題為真時,或命題就為真。
科目:高中數學 來源: 題型:解答題
甲廠以x 千克/小時的速度運輸生產某種產品(生產條件要求),每小時可獲得利潤是
元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,要用欄桿圍成一個面積為50平方米的長方形花園,其中有一面靠墻不需要欄桿,其中正面欄桿造價每米200元,兩個側面欄桿每米造價50元,設正面欄桿長度為米.
(1)將總造價y表示為關于的函數;
(2)問花園如何設計,總造價最少?并求最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
海安縣城有甲,乙兩家乒乓球俱樂部,兩家設備和服務都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設在甲家租一張球臺開展活動小時的收費為
元
,在乙家租一張球臺開展活動
小時的收費為
元
.試求
和
;
(2)問:小張選擇哪家比較合算?為什么?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com