【題目】下列函數中,既是偶函數又在區間(0,+∞)上是單調增函數的是( )
A.
B.y=|x|﹣1
C.y=lgx
D.
科目:高中數學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,
,
,
,
,
(單位:克)中,經統計得頻率分布直方圖如圖所示.
(1) 經計算估計這組數據的中位數;
(2)現按分層抽樣從質量為,
的芒果中隨機抽取
個,再從這
個中隨機抽取
個,求這
個芒果中恰有
個在
內的概率.
(3)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對質量低于克的芒果以
元/個收購,高于或等于
克的以
元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和為Sn , a1=1,an+1=2Sn+1(n∈N*),等差數列{bn}滿足b3=3,b5=9.
(1)分別求數列{an},{bn}的通項公式;
(2)設Cn= (n∈N*),求證Cn+1<Cn
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ ,
))的一條對稱軸為x=
,一個對稱中心為(
,0),在區間[0,
]上單調.
(1)求ω,φ的值;
(2)用描點法作出y=sin(ωx+φ)在[0,π]上的圖象.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M的方程為,直線l的方程為
,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
若
,試求點P的坐標;
求四邊形PAMB面積的最小值及此時點P的坐標;
求證:經過A,P,M三點的圓必過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=2sin(2x+ ),若將它的圖象向右平移
個單位,得到函數g(x)的圖象,則函數g(x)圖象的一條對稱軸的方程為( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2ax-x2-3ln x,其中a∈R,為常數.
(1)若f(x)在x∈[1,+∞)上是減函數,求實數a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的方程為(x﹣ )2+(y+1)2=9,以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)直線OP:θ= (p∈R)與圓C交于點M,N,求線段MN的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com