精英家教網 > 高中數學 > 題目詳情

【題目】以下判斷正確的是(
A.函數y=f(x)為R上可導函數,則f'(x0)=0是x0為函數f(x)極值點的充要條件
B.命題“ ”的否定是“?x∈R,x2+x﹣1>0”
C.“ ”是“函數f(x)=sin(ωx+φ)是偶函數”的充要條件
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題

【答案】C
【解析】解:對于A,函數y=f(x)為R上可導函數,則f′(x0)=0是x0為函數f(x)極值點的比要不充分條件,如f(x)=x3 , f′(x)=3x2 , 滿足f′(0)=0,但0不是函數的極值點,故A錯誤;
對于B,命題“ ”的否定是“x∈R,x2+x﹣1≥0”,故B錯誤;
對于C,若 ,則f(x)=sin(ωx+φ)=sin(ωx+ )=±cosωx,函數為偶函數,反之,若函數f(x)=sin(ωx+φ)是偶函數,
則ω×0+φ= ,即 ,∴“ ”是“函數f(x)=sin(ωx+φ)是偶函數”的充要條件,故C正確;
對于D,在△ABC中,“若A>B,則sinA>sinB”的逆命題為:“若sinA>sinB,則A>B”,由正弦定理可知:在△ABC中,a>bA>BsinA>sinB,
逆命題為真命題,故D錯誤.
故選:C.
【考點精析】認真審題,首先需要了解命題的真假判斷與應用(兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】本市某玩具生產公司根據市場調查分析,決定調整產品生產方案,準備每天生產, , 三種玩具共100個,且種玩具至少生產20個,每天生產時間不超過10小時,已知生產這些玩具每個所需工時(分鐘)和所獲利潤如表:

玩具名稱

工時(分鐘)

5

7

4

利潤(元)

5

6

3

(Ⅰ)用每天生產種玩具個數種玩具表示每天的利潤(元);

(Ⅱ)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=lnx+ ,m∈R
(1)當m=e(e為自然對數的底數)時,求f(x)的最小值;
(2)討論函數g(x)=f′(x)﹣ 零點的個數;
(3)(理科)若對任意b>a>0, <1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,將的圖象向右平移兩個單位長度,得到函數的圖象.

(1)求函數的解析式;

(2)若方程上有且僅有一個實根,求的取值范圍;

(3)若函數的圖象關于直線對稱,設,已知對任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行如圖所示的程序框圖,若輸出的,則判斷框內可以填入

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設斜率不為0的直線與拋物線交于兩點,與橢圓交于兩點,記直線的斜率分別為.

(1)求證:的值與直線的斜率的大小無關;

(2)設拋物線的焦點為,若,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】時,方程表示的曲線可能是______

②兩條平行直線 ③橢圓 ④雙曲線 ⑤拋物線

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C1的參數方程為 (θ為參數),曲線 C2的極坐標方程為ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標方程;
(2)設P為曲線C1上一點,Q為曲線 C2上一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是公差為2的等差數列,數列{bn滿足bn+1﹣bn=an , 且b2=﹣18,b3=﹣24.
(1)求數列{an}的通項公式;
(2)求bn取得最小值時n的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视